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1. INTRODUCTION 

Software for stiff systems of ordinary differential equations (ODES) has enjoyed a 
wide range of acceptance during the past decade. As a consequence, its impact has 
been substantial in the physical sciences and in engineering. 

The intent of this article is to give a review of modern methods and software 
solvers that are currently in use for stiff ODE systems. We also give examples show- 
ing both the challenges to the software and the capabilities of the solvers. 

In the remainder of this section, we discuss ODE forms, stiffness, problem struc- 
tures, and other features arising in stiff systems of interest. In Section 2, we survey 
the basic methods that are used, with some comments on their relative merits. Sec- 
tion 3 is a description of available software for stiff systems, as far as we are aware 
of it. In Section 4, we give 10 example problems in detail, followed by description of 
their solutions using available solvers. Section 5 mentions some related develop- 
ments, and Section 6 summarizes the paper. We expect the reader to choose those 
parts of the paper that are of greatest interest. 

A. ODES in Normal Form and an Example 

We begin with the canonical first order initial value problem and discuss 
problems in other forms later. We represent the first type as 

Y = f(t, Y), t, < t 6 tfinsl (1.1) 

Y(fo> = Yo, 11.2) 

where 

N is the number of scalar first order ODES 
t is the time-like independent variable 
y= [v’, y’,..., yNIT is the column N-vector of dependent 

variables, and the superscript T denotes vector transpose 
‘= d/dt denotes differentiation with respect to t 

f is an N-vector valued function of y and t 

to is the initial value or starting value and is given 
tfina, is the final value of the interval of integration 

Yo is the initial value N-vector. 

In terms of the components of (1.1) and (1.2), we have 

ji = f’(t, y’ ) y2 )...) yN) 

y’(to) = Y6 

for i = 1, 2 ,..,, N. 
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As an example of a system of stiff ODES, we borrow a model of a chemical reae- 
tion which has been described in several places [ 113,18,77,50] and can be 
described as a reaction of the type 

A, - A,, 0.04 

A*fA,- A,+A3, IO4 

2A, - 2A,, 1.5 x IQ7 

j’ = - 0.04y’ + 104y*y3 

32 = 0.04y” - 10 4y*y3 - 3 x wy*y* 

j3 = 3 x 1o’y*y* 

y’(Q) = 1 

y*(o) = 0 (1.4) 

.$(O) = 0. 

This reaction is interesting because the reaction rate coefficients (the constants on 
the right-hand side of (1.3)) vary over nine orders of magnitude. IMoreover, it can 
be shown that as t--f cc, y1 +O, y2 +O, and y3 + 1. Also, by Looking at the system 
or by an appropriate computation [78] we can see that the dominant equation at 
equilibrium is I;’ = - 104y2. Note that for any choice of initial value, the solution of 
this equation is a strongly damped exponential which is typical of stiff systems. 

B. The Notion of Stiffness 

We can now turn to the concept of stiffness. We will first give a rough notion and 
then (on the next subsection) a more precise one. 

A prototypical stiff differential equation can be given by 

j= -103[y-exp(-t)]-[exp(-t)] O<ltlt,,,, 

Y(O) = 0, 

(1.5) 

(1.6) 

where y is a scalar. The exact solution of this problem is 

y(t) = exp( - t) - exp( - 103t) 

and is seen to be comprised of two components, one of which (exp( - 103r)) varies 
much more rapidly in t than the other (exp( - t)). For this problem, the notion of 
stiffness can be formalized somewhat if the time constants z1 = 18 p-3 and z2 = H are 
introduced. Note that at l= zl, the fast component is exp( - 103z,) = exp( - I ) and 
the slow component at t = z2 is exp( -TV) = exp( - 1). These time constants corre- 
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spend to values of t for which their respective components have the value exp( - 1). 
Stiffness in this problem is caused by the presence of a small decay time constant zl, 

For t smaller than several times as large as zl, the fast component makes 
significant contributions to the value of the solution. This range of values of t is 
often called the transient interval, If the range of integration is restricted to the 
transient interval, we would not need to resort to any special numerical methods of 
integration, and the problem would not be considered stiff. However, beyond the 
transient interval, the value of the solution is essentially the value of the slow com- 
ponent. Yet the presence of the fast component (even though fully decayed) forces 
the use of either a very small step size (comparable to z,), if a tradiational explicit 
method is used to solve (1.5), (1.6), or else a stiff solver. Beyond the transient, the 
problem is stiff. 

Thus the stiffness is determined by the range of integration, i.e., by tfina,. The 
value of z2 would dictate that t fina, z 1 for a complete picture of the solution, but a 
smaller value might be posed instead. In any case, a quantitive measure of the 
stiffness of this prototype problem is 

If S is on the order of 1000 or larger, we would certainly regard the problem as stiff. 
If S is less than 10, the problem would be non-stiff. The intermediate values of S 
would correspond to problems whose descriptions would range from non-stiff, 
through mildly stiff, to stiff. The numerical values are valid, but the transition from 
non-stiff to stiff is not sharply defined. 

The same kind of observation can be made of the kinetics problem (1.3), (1.4), 
but the stiffness is somewhat less transparent. Recall that near the equilibrium 
values, the second equation reduces approximately to the simple 
ODE j2 = - 104y2, which has an exponential decay time constant of T = 10 -‘, On 
the other hand, a complete picture of the approach to equilibrium turns out to 
require integrating to about t = 107. Thus we again have a rapid decay time con- 
stant that is much shorter (or smaller) than the time range tfinal, and it is clear that 
we are looking at a stiff system of ODES. In both cases, the essential features of a 
stiff system have been captured: disparate time constants, an interval of integration 
several times longer than the shortest time constants, and an approach to the 
steady state that does not involve rapid oscillations. 

There have been several definitions and descriptions of stiff systems of ordinary 
differential equations given, e.g., [I 126, 22, 111, 341. Perhaps the most pragmatic 
way to determine the stiffness of a system of ODES is simply to solve it with a non- 
stiff differential equations package such as ODE [ 1271, DVERK [Sl], or DERKF 
[12S] to name but a few. Then, record the cost of solving the problem. By the way, 
it would be prudent to impose a limit on CPU time or the number of function 
evaluations. Similarly, solve the problem with a stiff ODE package such as LSODE 
[74], DGEAR [SS], or EPISODE [79] or an appropriate relative. Upper bounds 
on the cost should again be imposed. Now compare the costs of the two solutions 
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over the same time interval. If the stiff ODE solver was substantially less expensive 
to use than the non-stiff solver, then the problem was stiff. If the non-stiff solver was 
the less expensive, then the problem is non-stiff. Between these extremes are m 
stiff problems and, perhaps, other categories. We have not addressed here the 
sf appropriateness for non-stiff solvers on parts of the interva 
stiff solvers on other subintervals. However, this issue is now 
packages that switch methodologies through a stiffness detecto 

To illustrate this empirical determination procedure, cons 
(1.5), (2.6) by DERKF (a nonstiff/ODE solver) and by L 
method option), We pose the same error tolerances 
tolerance= IO-‘) for both, and ask for output a$ r=CI.QQI, 8.01, 0.1, I, being 
careful to constrain the number of internai time steps to 500. The results are as 
follows: DERKF completed the problem at a cost of 1876 evaluations ofJ while 
ESODE completed it with 136 (including those for evaluating afl@). The run times 
were in a ratio of about 2.4 to 1. Both solutions had five digits of accuracy at all 

ut the higher cost of the solution from the non-stiff solver clearly 
indicates that the problem is stiff. For other problems, the cost (run time) ratios 
may be significantly larger. Shampine [ 125 ] gives further empirical measmes, 

C. The Connection between St$%ess and Stabikity 

The notions of stiffness and stability are related. Let us briefly review how [22, 
1263. Suppose we have two distinct solutions of (1.1), say y and 

jr-h=f(t,y)-f(t, 

If we neglect higher order terms, then 

y - bb N f,(t, w)(y - 

If we assume that y-w is sufficiently small, in an approximate sense: then 

jr-ti=J(y-w), 

where J= f, is the Jacobian matrix given by 

the element of J in row i, column j. assume that is locally a con- 
is a stable matrix (all eigenvalues o have negative real parts) then 

as t + cc. If we reevaluate J as t increases, and require that each J be 
locally constant and a stable matrix, then it follows that y and w tend to the sanie 
finite function as I -+ co. That is, (1.1) is stable By stable, we mean that given any 
two particular solutions y and w of (l.l), they ten to the Same finite function as 
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t --+ a. (Other kinds of stability are also important, but this is the one needed here.) 
The connection between stiff ODES and stable ODES is this: Stiff ODES are 
extremely stable, in that there is at least one eigenvalue with a large negative real 
part. In fact, they can be called super-stable [126). 

A more rigorous definition of stiffness was also given by Shampine and Gear 
L-1261: 

By a stiff problem we mean one for which no solution component is unstable (no eigenvalue 
[Of the Jacobian matrix] has a real part which is at all large and positive) and at least some 
component is very stable (at least one eigenvalue has a real part which is large and negative). 
Further, we will not call a problem stiff unless its solution is slowly varying with respect to the 
most negative part of the eigenvalues.... Consequently a problem may be stiff for some inter- 
vals and not for others. 

By this definition, non-negative real parts in the spectrum of the Jacobian matrix 
are acceptable, as long as they reflect neutral or slowly growing modes in the 
mathematical model. Further, these modes must also stay within reasonable bounds 
over the time interval, t, < t d tfina,, of interest, and must be slowly varying com- 
pared to the most strongly damped mode. 

To illustrate this point, the scalar example (1.5) has one eigenvalue, 
aj/+ = - 103. By (1.7), the solution beyond the transient is essentially exp( - t). It 
is indeed slowly varying with respect to exp( - 103t). By contrast, if we replace the 
forcing function exp( -t) by (e.g.) sin(lOOr), the solution no longer varies slowly 
relative to the strongly damped mode, and the problem is not stiff. 

The latter point relates closely to a common misunderstanding of stiffness. 
Problems which have undamped high frequency oscillations in the solution, 
whether attributable to forcing functions or to eigenvalues with large imaginary 
parts, are called stiff by some authors. We (and most authors) do not call such 
problems stiff. One reason is that highly oscillatory problems require numerical 
approaches that differ radically from those for stiff problems. 

The above definition leads to a quantitative definition of a stiffness ratio, 
matching that used in the simple example earlier. We simply need to identify the 
eigenvalue I with the largest negative real part, define the smallest time constant to 
be z = - l/Re(A), and define the stiffness ratio to be 

s = (4inal- kJ/~. (1.8) 

Unfortunately, this is also not a precise definition, because in general z varies along 
the solution. We can only use (1.8) in a local sense, applying it to subintervals 
where z is essentially a constant. 

Now, let us return to the kinetics model (1.3), (1.4). Some computations show 
that one associated eigenvalue is always 0. (The simplest way to see this is to note 
that 3’ + 9’ + j3 = 0, which in turn tells us that mass is conserved.) Moreover, at 
equilibrium (as t -+ co), the eigenvalues are 0, 0, and - 104-0.04. Thus the 
problem is certainly stiff if fana, is of order 1 or larger. By extending the notion of 
stability we examined earlier to include neutral stability (eigenvalues equal to zero), 
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we can also show the problem is (neutrally) stable. If, however, we numeri 
turb the asymptotically zero eigenvalue to a positive value, then the pro 
become numerically unstable. This instability can arise through numerical 
or insufficiently stringent error control. This feature makes this problem 
computationally challenging if we want to solve it for large t [77, 331. 

D. Stiffness and the Method of Lines 

So far, we have seen that stiff systems of differential equations arise directly from 
a model. However, they can also arise in another way-the spatial discretization of 
parabolic partial differential equations. As an illustrative example, we take the one- 
dimensional heat equation, 

u, = L&, 0 d x f 1, 0 < t < tfina, 

w, t, 40, th fdo, t)) = 0, al, f, 41, t), %(L t)) = 0 (1.9) 

44 0) = 4(x). 

Here subscripts denote differentiation, u is the dependent variable, t is time, D is the 
diffusion coefficient, and x denotes spatial position. Moreover, L(0, t, ~(0, t), 
~~(0, t)) = 0 is the left boundary condition, while R(1, t, ~(1, t), ~~(1, t)) = 0 is the 
right boundary condition. 

We can reduce (1.9) to a system of ODES by a number of spatial discretiaation 
techniques, such as Galerkin’s procedure in conjunction with B-splines, co~~ocati~r, 
in conjunction with B-splines, or other finite element techniques. Here, we simply 
replace the spatial derivative with a three point, second-order difference scheme and 
use the N + 2 uniformly spaced grid points, 

xi = i/( N + 1 ), i=o, l,..., NI- 1. 

Also, for simplicity, let us take the boundary conditions to be of homogeneous 
Dirichlet type: u = 0 at x = 0 and x = 1. The system of ODES is then 

jr=Jy (1.10) 

Y(O) = @D, (!“%I) 

where 

y= CY’, YL YNIT 

and 

y’-N U(X/, t) 

J = [D/(~x)~] tridiag[l, -2, l] (the N x N tridiagonal matrix) 

Ax= l/(N+ 1) 
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The eigenvalues of J are given by [141], 

-20 
2,=(dx)z k = 1, 2,..., N. 

For N large, the largest eigenvalue (in magnitude) can be approximated by 

A1 z - 4N’D 

while the eigenvalue with smallest modulus can be estimated by AN z - n2D. 

The negative reciprocals of these eigenvalues correspond to the time constants for 
the system of ODES. Again, if renal denotes the length of the interval of integration, 
then the stiffness ratio for the system of ODES is, by (1.8), 

S = 4tfi,a, DN2. 

So, for example, if tsna, D = 1 and N = 100, this problem would be stiff. 

E. Linearly Implicit ODES, Differential-Algebraic 
Systems, and the Method of Lines 

If we use Galerkin or collocation for (1.8) in conjunction with B-splines, then the 
system of ODES has the general form [134, 96, 971, 

Aji=Jy (1.12) 

y(0) = @. (1.13) 

of the coefficients of the expansion of the Now, the vector y is comprised 
approximate solution 

44 t I= f Yitt) Bi(x) 
i= 1 

in terms of the B-spline basis functions Bi. The initial values for the coefficients are 
determined by a projection of the initial profile into the approximate solution space. 

In the case that L and R in (1.9) prescribe essential boundary conditions, e.g., 
~(0, t) and ~(1, t) are prescribed, A may be a singular matrix, with zero rows 
corresponding to equations that prescribe ~(0, t) and ~(1, t). Consequently (1.12) 
may be a differential-algebraic system, which is comprised of both implicit ordinary 
differential equations and algebraic equations. If L and R in (1.9) describe natural 
boundary conditions, e.g., (&/8x)(0, t) and (&/8x)(1, t) are prescribed, then (1.12) 
is a system of implicit ordinary differential equations and A is nonsingular. This is 
because the variational representation (the weak form representation) imposes no 
constraints on the approximate solution. 



STIFF ODE SOLVERS 9 

This example indicates the flexibility required in the underlying software 
tial differential packages such as POST [118], DISPL2 [94,97], and P 
jlO21. These and several other packages automatically implement sp 
cretizations to the user’s specification. This technique is called the 
method of lines [101-j. We also point out that uniform grids are not re 
hand discretizations or by the good method of lines codes Indeed, some 
tal codes dynamically adjust and/or insert grid points to model fronts 
phenomena. This dynamic adjustment may revise the form of (1.12). 

Differential-algebraic systems arise in many other ways also. A few are descri 
in Sincovec er al. [131]. 

F. Problem Structure 

One key to effectively using stiff ODE solvers is the use of the a C?priate 
package to take advantage of the structure of a problem-the COU@ of the 
dependent variables. To give some idea of the significance of problem Structure We 

have seen run times reduced by factors of 20 to 200. How? The user ap tely 
ordered the dependent variables and chose the software package to the 
resulting structure. We now address several structures in turn. 

One type of problem we have talked about is the dense syslem of equations in MOY- 
ma1 form. That is, each ODE is coupled to most of the dependent variables and the 
system is in the form (Ll), (1.2). An example of such a system is (1.3), (1.4)~ Larger 
dense systems are quite common. 

We have also seen a simple PDE (1.9) which led to a differential equation in nor- 
mal form but with a tridiagonal Jacobian. In the case of a single ~~~~i~e~r 
parabolic E, the Jacobian would generally be banded. (The bandw 
depend o discretization.) That is, J,= 0 for i-j> ML and j- i > 
ML and MU represent the lower and upper half bandwidths of 
the case of (1.10) M, = M, = 1. The idea is fairly straig~tforwa 
store the elements within the bands formed by the ML subdi 
diagonal, and the MU superdiagonals of J. We can also apply this idea to systems 
of PDEs in one spatial dimension. Such systems can also be treated with co&s 
using block structured Jacobians. 

anded Jacobians also arise in systems of 8 
only a small, fixed number of near neighbors ar 
good ~xarn~~~ of this is a series of stirred tank G 

Linearly haplicit ODES in the form ( 1.12 ), (1.13 ). ~e~er~~~zed to ~~~~~~ea~ depera- 
dence on y, take the form 

Ajr = g(t, Y 1, to 6 2 =s tIina1 

Y(fo) = 90. (L45) 

In this form, A is an Nx N coefficient matrix and g is an N-vector valued ~~~~t~~~, 
ere = A(f, y) is allowed. Systems of this type do arise from finite e%ement 
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methods. However, they also arise from the finite difference treatment of linearly 

implicit PDEs, which occur in oil reservoir models [61, 44, 106 3. In the case of 
PDEs in one spatial dimension, A and g, are usually banded. 

Block structured Jacobiuns arise in ODES in normal form (l.l), (1.2) in the 
solution of systems of PDEs in two or more spatial dimensions. By block struc- 
tured, we mean that J can be partitioned into submatrices or blocks of size IZ x 12. 
Most of the blocks are non-zero. However, the non-zero elements occupy a few 
blocks, usually in a discernable structure, but not necessarily tightly packed 
together. In two-dimensional PDEs, there usually is a block-banded structure 
(blocks of nonzero elements are usually banded about the main diagonal), a few 
outlying block diagonals and, perhaps, a few block columns or rows have nonzero 
elements. Such systems can also arise in networks of various types. 

We note that block structured linearly implicit ODES (1.14), (1.15) also arise in 
solving one dimensional PDEs by finite element methods. 

Normal form ODES with sparse Jacobiuns occur in PDEs on irregular geometries, 
certain loosely coupled networks, and some chemical kinetics models involving a 
large number of species or compositions. In general, a sparse matrix is a matrix 
with a very small percentage of nonzero elements. A general sparse description of 
the Jacobian is appropriate when the nonzero elements form no readily discernable 
pattern of the types discussed previously. Alternatively, it may be appropriate when 
the pattern is such that there is no neat way to take advantage of the structure, e.g., 
no handy software package. 

G. Active Time Scales 

Modern software packages for ODES are capable of handling a broad spectrum 
of problems and problem features. So, let us see what some of these features are. 

Contrary to the perceptions of some writers, stiff problems do not always have 
single transient region. There may be several regions in which transient phenomena 
occur, That is, there may be recurring transient regions where the problem is non- 
stiff followed by regions where the problem is stiff. We were introduced to problems 
of this type through the solution of chemical kinetics models of certain minor 
species in the upper atmosphere 1159, 43, 20, 181. The model is called the Chapman 
mechanism. Its features include very rapid changes in the concentrations of minor 
chemical species. These changes correspond to the rising and the setting of the sun, 
since the reactions are simply related to photodissociation. To our knowledge, 
Gelinas and Dickinson were the first to solve this problem without restarts or 
averaging in 1973, using a prototype of EPISODE [59]. 

Another model which is in some sense of a similar nature to the Chapman model 
is the Field-Noyes model of a chemical oscillator (Field and Noyes [52)). A 
chemical oscillator is a chemical reaction which takes place in such a way that the 
concentrations of the chemical species in the system vary periodically in time. In the 
case of the Field-Noyes oscillator, the concentrations of the three species vary in 
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such a way that the three time scales of the reactions are very evident and disparate 
over each period of the reaction. 

Other forms of periodic transients do occur in ODEs. Consequently, solvers must 
accommodate these phenomena. They must also handle traveling waves. Let us see 
how traveling waves arise and why they must be handled. 

In various applications of engineering and science we find time dependent PLIES 
involving convection, diffusion, and reactions. In this work, we shall assume that 
the cell Peclet numbers are small, say 10 or less. However, we have used MOL 
packages and techniques to solve non-diffusive systems. For many of these PDEs. 
the solutions have fronts in the variables which correspond to temperature. concen- 
!rations, saturations, density. or some other physical entity. We are quite often 
interested in the variation in time and/or space of a wave front. This could corre- 
spond to a reaction front, flame front, or leading edge of a phase. Although these 
spatial discretization and front tracking issues are important, they are not within 
the scope of this paper. The challenge, in general, is to develop an economical, 
reliable, universal strategy for tracking fronts. The challenge for ODE software. in 
particular, is to accommodate this strategy. 

In the next section, we will discuss the numerical methods which are designed to 
handle these phenomena and features. 

2. SURVEY OF MF.THODS 

Software for ODE initial value problems has progressed to a point where, in 
most casts, the user needs to know little or nothing about the methods on which the 
software is based to get reliable answers economically. The user simply follows a set 
of usage instructions. perhaps experimenting a little with input parameters, until 
satisfactory results are obtained. However, these instructions and the requirements 
imposed on the user vary greatly among solvers. The reasons for this relate largely 
to properties of the underlying methods. Consequently, it is helpful for users to 
have some famiiiarity with the methods in the software packages. Moreover, ODE 
problems with special features often cannot be lit into the available software 
without modifications to the latter, and this situation certainly requires a 
knowledge of methods. Finally, we recognize that the last word on ODE methods 
has not been said, and a familiarity with current methods is valuable in assessing 
new methods that appear in the literature from time to time. Some of the methods 
we mention, which are not yet available in production software form, may someday 
appear in highly effective software. 

Other surveys of ODE methods have appeared occasionally. Two recent ones are 
Seward, Fairweather, and Johnston [ 1201 and Gupta, Sacks-Davis, and Tischcr 
[h3J 

For thcsc reasons, we give here a brief survey of the numerical ODE methods 
that are currently used in the more popular and successful ODE (initial value) 
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solvers, both stiff and non-stiff. We will write the problem in the simple general 
form 

9 = f(t, Y), Y(to) = Yo (2.1) 

where y is a vector of length N, to, and y. are given, and f is an arbitrary vector- 
valued function. Modifications for the linearly implicit form 

Ajr = g(t, Y), Y(fo) = Yo (2.2) 

will also be described. 

A. Linear Multistep Methods 

The class of linear multistep methods is large and varied. We begin with it 
because it contains some of the most useful methods for stiff problems and also for 
non-stiff problems. This fact is reflected in both the available software and the 
frequency if its use. 

These and the other methods discussed here are discrete, in the sense that what is 
produced is basically a sequence yo, yr,..., yn,..., of values of y which approximate 
the solution y(t) at discrete t values to, t, ,..., t, ,.... In the linear multistep case, these 
discrete values of y are defined by a formula of the form 

yn= ? a,y,jth 2 piyn-j. (2.3) 
i=l i=O 

Here yj denotes f(tj, y,), h is a constant step size in t, i.e., h = t, - t,_ , . The coef- 
ficients ai and pi and the nonnegative integer constants K, and Kz are fixed for a 
given method. The number K= max(K,, K2) is the step number, i.e., the number of 
past values involved, and (2.3) is referred to as a K-step method. Note that the yi 
and yj occur linearly in (2.3); hence, the name. These formulas can also be written 
in a form which accounts for varying step sizes hj = tj - tj- 1. ln that case, they are 
written as 

Yn= 2 UniYn-i+hn 2 PniPpr-i, (2.4) 
i=l i=O 

where the a and p coefficients now depend on h,, h, _ 1 ,..., h, - K+ 1. 
The simplest examples of linear multistep methods are the Euler (forward Euler) 

method, 

yn=yn-i+hjTn-1 
and the backward Euler method, 

yn=yn-l+hjl,. 
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These are one-step methods (K = I), but are nevertheless included in the linear 
tistep class, as degenerate cases, for convenience. 

The class of methods now most heavily use for stiff problems is that of 
ackward Differentiation Formulas (BDFs) Th are chara~te~zed by puttin 

M, = 0 and K, = 4 in (2.3) or (2.4) above. Thus, the fixed-step BDF of order Q is 

and the variable step BDF of order 4 is 

with ct,, and /Ino depending on h,/h,- 1 )..., h,/h,-q+ 1. The case q = 1 iis the 
backward Euler method. The name BDF comes from writing (2.5) and (2.6) in a 
form that gives jl, as a combinations of the yn _ i (approximately). 

Among the most popular non-stiff methods are the Adams methods, which are 
characterized by having only one term, y, _ 1, in the first sum in (2.3) or (2.4). Thus, 
the explicit Adams method of order q is given by either 

y--l 
Yn=Yn-l+h C Bipn-c 

i=l 
(2.7) 

or the variable-step analog of this formula, and the implicit Adams method of order 
q is given by either 

q--l 
Yn=Y+l +h c PiLn--i (2.8) 

i=O 

or its variable-step analog. The familiar Trapezoid Rule, 

Yn=Yn-1 + (hP)(jin + 3*- 11, (2.9) 

is the case 4 = 2 in (2.8). (Some refer to (2.9) as the Crank-Nicolson formula in the 
context of partial differential equations.) 

The term order is well-defined for linear multistep methods. For (2.3), it is the 
iargest integer q for which 

Y(f,)- 2 “iY(t,-J-h T pi~(t,z~i)=O(hq+l) 
i=l i=O 

as h -0, when y(t) is an arbitrary smooth function. It can be equivalently defined 
as the largest integer q for which the local error y,-- y(d,) = O(hq+‘) when (2.3) ks 
used to take one step with all past values exact (y, _ i = y( t, _ J for i 3 1). In general, 
a method of order q yields gfobal errors yn - y(r,) = O(h4) when integrating from to 



14 BYRNE AND HINDMARSH 

to a fixed t,=t with h-+0 (n=(t-top + co). The analogous definitions and 
results for (2.4) are straightforward, although the theory is complicated by the 
variability of hi. 

In the practical implementation of linear multistep methods, the most significant 
distinction among them is between implicit and explicit methods. A method given 
by (2.3) or (2.4) is explicit if PO = 0 (jr, is absent), and is implicit otherwise. For an 
implicit method, an algebraic system of the form 

Y,=Wof(tnf Y,)+ C laiY,-i~hpiji,-i)=hBof(t,, Y,)+a, 
i>l 

(2.10) 

must be solved for yn at each step. The choice methods for doing this has a 
profound impact on the efficiency of the resulting algorithm or solver. As f is in 
general nonlinear, an iterative procedure of some type is usually used. The simplest 
such procedure is functional (or fixed-point) iteration, 

Yn(m+ 1) = MJk, YncmJ + a, (m = 0, l,...), 

where ynCoj is an initial guess for y, and m denotes the iteration count. This works 
reasonably well for nonstiff problems, but for stiff problems it converges only when 
h is smaller than or comparable to the smallest time constant in the system, and 
such a restriction on h is unacceptable because of excessive computer run time. (For 
this reason, an implicit formula combined with functional iteration is usually 
referred to as an explicit method. Because of the restriction on the step size, it is 
certainly a non-stiff method.) 

For stiff problems, the choices most often made for solving (2.10) are based on 
Newton’s method. For the problem in the form 

F(Y,) = Y,, - WJk, YJ -a, = 0, 

Newton iteration takes the form 

Y n(m+l) = y,(m) - CF,(Y,&I -‘WY,,,,) 

or 

CI - wv&~ Yn(m))l(Yn(m+ 1) - Ynw) = -F(Yfz,d 

This is in general a powerful method, but has some considerable costs associated 
with it. The first is that of computing and storing the Jacobian matrix f,, and the 
second is in the solution of the Nx N linear system for the correction 
Yn(m+l) -ynCmY Both costs can be reduced greatly by modifying the iteration and 
paying close attention to matrix structures. For one thing, f, need not be recom- 
puted in (2.11) at every iteration; little is lost in speed of convergence with the use 
of a fixed value of the Jacobian in the iterations for one time step. By the same 
reasoning, f, can be kept fixed for several steps, provided a test can be made to 
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decide when to recompute it. For a given problem, f, may well have a sparse struc- 
ture which can be exploited to reduce the costs of computing and storing it and of 
solving the system. Once a value of the matrix 

F,=P=J-h&f, (2.1.2) 

is computed (or approximated), suitable preprocessing of it (such as LU 
factorization) can be done, depending on the structure assume 
subsequent solutions of linear systems 

Pdy= -F 

are as inexpensive as possible. By the way, some current work brought to our atten- 
tion warrants the following caveat: if the number of equations in the syste 

eater than one, then the explicit inverse [F,(y,,,,)j -i should not be ~orn~~te 
ther, the form (2.11) should be solved by modern numerical linear a~gebra~ 

methods. The reason is efficiency. 
Regardless of the choice of iteration, an initial guess ynCo, is always need 

is easily obtained by appealing to any of the explicit linear multi§te~ meth 
Linear multistep methods can also be applied to the implicit ODE proble 

with relatively little additional effort. An approach that is usually 
unecononzical is to apply them to the equivalent system 

This replaces evaluations of g with more costly evaluations of f and, what is much 
worse, it replaces matrices A and g,, which typically have a sparse structure, with a 
matrix f, which is most likely dense (not sparse). Instead, if we multiply any of the 
basic formulas (2.3) or (2.4) by A(t,, y,) and use (2.10) we get an algebraic system 
of the form 

G(Y,) = N~,Y,) jr, -Wog(k YJ - A(L Y,) 8, = (2.13) 
with a, as before (known). The various ways of treating (2.10) by Newton-like 
methods in the case of an explicit ODE also apply here, in terms of iterations of the 
form 

G,[Y n(m + 1) - Y,(m) (2.14) 

Thus, for example, if A is at most weakly dependent on y, a good approximation to 
G, is 

G,=A-&gy 

evaluated at some convenient point. Note the similarity to the matrix in the 
explicit ODE case (2.12). If A depends strongly on y, 6, must include other terms 

581/70/l-2 
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that involve aA/@. In either case, it is clear that the cost of the major operations in 
a step is only marginally greater for this approach to A9 = g than they would be for 
the corresponding stiff method applied to a similar problem of the form jr = f. 

Formally, these techniques also apply to the case where A is singular, i.e., when 
(2.2) is a differential-algebraic system (DAS), provided that the matrix 6, is non- 
singular and that all of the initial data y(tO), jl(t,) is available. However, this is a 
very risky approach to DASs in general, even those of the form (2.2), without an 
understanding of the DAS in question [ 108, 581. The problem may be of a type for 
which these ODE-based methods work well, or it may be of a type that is 
numerically ill-posed for these methods, or even mathematically ill-posed (indepen- 
dent of the method). Fortunately, it is often possible to reformulate ill-posed DAS 
problems so that they are solvable with these methods. 

Returning to the Newton or modified Newton iterations (2.11) and (2.14), the 
manner in which this linear system is treated is extremely important. In fact, the 
technique for storing and processing the matrix F, or G, often makes the difference 
between being able to solve a stiff ODE system in the fast core of a computer and 
being unable to do so. For example, if the structure of this matrix is banded, then 
only the elements in this band need to be stored and used. Other matrix structures 
such as general sparse structure and block banded structure have also been taken 
advantage of. 

For general use, linear multipstep formulas are of little value without a means of 
selecting values of the step size h and method order q for which the method is 
reasonably accurate and efticient. The algorithms for doing this constitute a major 
distinction between modern ODE software and its obsolete counterparts. These 
algorithms are the result of considerable research and development efforts, which 
are still continuing, and their impact on the accuracy and economy achievable with 
modern codes is often quite dramatic. A key ingredient here is that the step and 
order selection is based on estimates of the actual errors committed by the 
numerical method, rather than ad hoc rules often used. 

The basic features of these error control algorithms are quite simple. On taking a 
step to t,, of size h at order q, the error E(q, h) committed on the step, according to 
the local error theory, is given asymptotically by Ch4+ 1 y“’ + “(t,) for some known 
constant C, independent of the problem being solved. Now we (typically) impose a 
condition on h and q that some norm of E(q, h) satisfy 

IIE(q, h)ll ds (2.15) 

for a user specified error tolerance parameter E. The derivative ycq + ” can be easily 
estimated by finite differences using quantities already generated in the com- 
putation. Thus we can compute a step size hi at which /jE(q, h)]] is about equal to E. 
This is the step size considered appropriate at order q for the current step and the 
next few steps. Similarly, E(q’, h) can be estimated for other orders q’ (typically) 
restricted to q & l), and values hi obtained on the same basis. Now the code simply 
chooses the order qt or q which gives the largest step size, and uses that maximum 
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step size. If the step just taken failed the error test (2.153, the step is redone accord- 
ingly. At the beginning of the problem, the order q is usually set to 1, for which no 
past values prior to yP arc needed, and the order then increases to whatever vaiue is 
found to be most efficient. The details of the various decisions, approximations, 
fudge factors. etc., vary considerably and arc highly heuristic in nature. But exten- 
sive use has shown that these ideas work well in practice. 

The selection process for h and y that we just sketched is incorporated in various 
codes. An additional constraint, the requirement of monotone decreasing differences 
(with respect to order), is imposed in others [127]. This illustrates the concept that 
different underlying algorithms lead to different computational strategies. 

B. Runge-Kuttu Metizotis 

The class of Runge-Kutta methods is also wide and varied, and has a iong 
history. However, it is less often used in current software, especially for stiff 
problems. and so will be summarized only briefly here. 

Runge-Ku!ta methods arc one-step methods, but involve intermediate stages in a 
step. They can bc either explicit or implicit. The general r-stage explicit Runge- 
Kur~a for $ = f can be written as 

k,=hf(r,.,,yn.,) (2.16) 

k, = hf(t,,. , + c:h. y,j , + ‘c’ a;,k,) ii= 7 -.._., r; (?.l:i 
,- ! 

Y,, =Y n , t i b,k,, (3.1Y.l 
r-1 

where the CI,,, b;, and c, are constants satisfying c, = XI; i II,,. Through rather 
tedious calculations. we could determine the order of accuracy I/ of such a method. 
and arrive al coefficient values which yield given orders (4 never exceeds I). At the 
same time. it is often possible to embed a method of order q -- 1 within the method 
of order y, and this makes a dynamic error control possible, with little added effort, 
based on the difference between the two y,, values. 

For stiff problems, explicit Runge-Kutta methods are inappropriate, and 
analogous implicit methods have been developed. The genera! r-stage implicit 
Rungc-Kutta method can be written 

r 

k,=hf(t,, , +-(.A s,i- , + 1 u,,k,f (i= I...., 1.) (2.i9L 
I 1 

Y,,=Y,, I+ 1 h,k,. 
,-I 

(2.20) 
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So we need to solve an algebraic system in rN unknowns. Several special cases have 
been studied in which this algebraic problem is less formidable. One is the semi- 
implicit case where the matrix (+) is lower triangular and so each ki involves solv- 
ing an algebraic system of equations of size N. A Newton-like solution of the 
equation for ki involves a matrix of the form I - ha,,fy, and a further reduction in 
algebraic effort can be achieved if we take all aii equal-the. so-called diagonally 
implicit case Cl]. Other (more complicated) approaches have been used to reduce 
the cost of solving the fully implicit case to a feasible level. One of these is that of 
singly implicit Runge-Kutta method [13] characterized by the fact that the matrix 
(aV) has a single r-fold eigenvalue, thereby permitting a linear transformation to an 
algebraic system that resembles that of the diagonally implicit case. 

Runge-Kutta (RK) methods have been generalized in another direction, in the 
form of Rosenbrock methods and so-called ROW [105, 881. Here terms involving 
the Jacobian matrix are added to (2.19), so that it has the form 

ki = hf,(t, _ 1 + cih, yn- 1 c jj a,kj) + hJ i d,ki. 
j=l j=i 

Here J is either aflay evaluated at yn or some approximation to that Jacobian, and 
the coefficients di, are chosen to optimize order and stability properties. Setting all 
the dii equal reduces the required matrix computation to a minimum. 

Another variation on implicit Runge-Kutta methods is the class of mono-implicit 
RK methods [29], in which a term involving the unknown y, is added to the y 
argument of f in (2.17), within the equations for an explicit RK method. 

C. Other Methods 

The special challenges posed by stiff ODE problems have led to searches for 
suitable methods outside of the traditional linear multistep and Runge-Kutta 
classes. One reason for including these methods is completeness. Another is that for 
some problems BDF does not work very well. In particular, for highly oscillatory 
problems, BDF methods with order greater than 2 do not work well. That said, we 
also warn the user that the exotic may not be robust. We will only mention the 
other methods here, as their value has not yet been fully assessed. The list below is 
intended to be neither exhaustive nor in any particular order. 

(i) Collocation methods. If the solution function y(t) is approximated by a 
piecewise polynomial function p(t), then collocation methods arise by posing con- 
ditions of the form 

iJ(t) = f(t, P(f)) 

for a set of discrete values of t [82, 83, 841. These methods can also be regarded as 
implicit Runge-Kutta or block methods. 
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(ii) Block und composite methods. If one linear multistep method is used to 

advance from 1:) to t, , another from t, to 12, and so on up to t,, after which the 
cycle is repeated, the result is a cyclic composite multistep method CS, 140, 13% 
137-j. If instead the values at all of the points f\,..., t, are defined by a coupled set of 
L equations, the method is called a block or block-implicit method Cl44 31. (See 
&o Rosser [I 151, who noted the similarity of these methods to Runge-Kurta 
methods.) 

(iii) ~.utrupolation. Suppose that a given basic method (usually a one-step 
method) is used to approximate y(t) whenever y(t - H) is given, using n Steps of 
size /I= II!n. Then an extrapolation method arises by considering the result. 
denoted y(t, h). as a function of h which can be approximated wei1 (usually by’ a 
polynomial or a rational function) by means of the data obtained from several 
values of h. This approximation is evaluated at h =0 to get the final extrapoiated 
approximation to y(t) [98, 51. These can be thought of as multistage, one-step 
methods, akin to Runge- Kutta. For recent review of extrapo!ation methods, scc 
[401. 

(iv] Alultidwicutiw methods. Linear multistep methods that involve 
derivatives of order two or more are of interest, even though the ODES are first 
order [48]. Their implemention requires a means of accurately computing ihe 
higher order derivatives as well as solving the implicit reiation defining the step. 

v. Bkwded methods und mtltrix coeJjCicien/ methods. Motivated by the attrac- 
tive fcaturcs of certain second-derivative methods, a new class of methods- -blended 
multistep methods- -was developed in which the formuia is a linear combination of 
tivo first derivative formulas (e.g., Adams and BDF), involving the Jacobian matrix 
in the coefficients [132]. Blended formulas of an extended type are given by 1281. 
Marc generally, first-derivative multistep formulas with matrix-valued coeff,cients 
have been studied [95]. 

(vi) Aceruging. An averaging method is one in which an integration step (of 
cizc h) is taken with each of several linear multistep (or other) methods. and the 
final answer taken to be a linear combination of the individual answers [PI), 

(vii) t;ittirrg. In an integration method (such as a linear multistep method) 
has one or more fret parameters in it, and if a corresponding number of the 
dominant eigenvalues of the problem can be estimated, then the free parameters can 
be set so that the method integrates exactly the exponential modes corresponding 
to those cigenvalucs. The result is an exponential fitting method [l(Q 273. 

(viii) H~hrid mc~thods. The features of linear multistep methods and of 
Runge-Kutta methods can be combined in hybrid multistag&-multistep methods 
[ 15, 16, 17, 251. One can even include multiderivative methods in such a hybrid 
class [65]. A large number of free parameters then has to be dealt with by way of 
accuracy and stability criteria. Application-oriented hybrid methods are also com- 
mon, wherein some carefully selected components or terms of a system are t:eated 
implicitly, and the rest explicitly. 
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(ix) Partitioning. For problems where the stiff eigenvalues (those with 
-Re(n) very large) are well separated from the rest, a number of approaches have 
been studied to separate out the corresponding modes and treat the problem as 
composed of non-stiff and stiff subsystems. (This is a decoupling by equation type.) 
Some involve automatic determination of a suitable linear transformation and par- 
tition [2, 10, 51, 1431, but these are limited to the case of relatively few stiff eigen- 
values. Others are suitable when the user can specify an appropriate partition 
[47, SO]. 

(x) One-leg methods. A class of methods that resembles that of classical linear 
multistep methods was introduced by Dahlquist [38], who calls them one-leg 
methods [38, 1423. They are based on formulas of the type 

-OIoJ’n= $J a,y,-<+hf fJ /?itn-i> 2 /?iJ’n-i 
i= 1 ( 

(2.21) 
i=O j-0 1 

with a normalization C pi= 1. 

If f does not depend on t and is linear in y, this is the same as a linear multistep 
method, but for general f it may have some advantages over linear multistep 
methods. 

D. Pros and Cons 

Without going into too much detail about the various methods and their 
implementations, it is nevertheless possible to state some advantages and disadvan- 
tages of the various method classes of stiff problems. Naturally, these lists depend 
on the problem environment. As a general rule, for problems which are small in size 
and inexpensive in function evaluations (of f or g, etc.), there is little difference 
among methods in performance, and the main criterion for a choice should be the 
convenience of accessing a solver and setting up the probIem for the use of the 
solver. At the other extreme, problems with large sizes and expensive functions can 
display vast performance differences among the various methods and solvers. The 
comments below are aimed at the environment in which the size and/or the expense 
is considerable. 

Implicit linear multistep methods possessing suitable stiff stability properties, 
including the BDF methods, have some very attractive features for stiff systems: 

(1) The method order is easily varied in a dynamic manner. 
(2) The (2) T h e  

e a s i l y  I m p l i c i t  can be done in a very inexpen- 
sive way. 

(3) The algebraic system to be solved at each step is only of size N (not a 
multiple of N), and this system, namely (2.10) or (2.13), is highly amenable to a 
wide class of iterative nonlinear system methods, notably Newton’s method and its 
variants [23]. 
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n a Newton or Newton-like solution sf the algebraic system, the ~c~~o~ 
9 involved is related very closely to the functions 
ly one such N x N matrix needs to be stored at any time. 

(5) The Newton matrix, and thus the problem-related mat 
which it is composed, do not need to be very accurate. Cons 
often be tolerated, with only a modest compensatdng price in 
One consequence of this is that terms in the Jacobian w 
but numerically smali can be discarded. Another is th 
not be evaluated at every step. (See Byrne and ~i~dma~sh [23 

e direct relationship of the Newton matrix to the functions 
roblem allows for the exploitation of sparse structure in the latter, 
ous advantages in both storage and cost for large and/or expensive 

(7) An accurate initial gues for use in a mo 
available by way of an explicit formula, with the result 

er step is typically less than 2. 

Very few other methods have all of these advantages. 
The chief disadvantages of stiff multistep methods stem from their ~n~cr~~t muf- 

igh order accuracy requires high st number K, hence 
d numerous steps of smailer size ve to be taken to 
r. (Alternatively, another method could be used for st 
od can also lose much of its efficiency advantage if 
discontinuities; then a one-step method, which has n 

ast solution values, has a distinct advantage inally, 
step methods (especially the BDFs) have relatively po 

the problem has highly oscillatory modes. 
unge-Kutta methods, only those of implicit t hould be con- 
roblems. For the sake of efficiency in so gebraic system 
r-stage method), only certain implicit R s are of interest. 

For y = f with a diagonally implicit method, a newton-~ikc iteration involves only a 
single N x N matrix of the form .I - h/X,, but r different f values and right-bard side 
vectors. The same result holds for the singly implicit methods. This is much more 
economical than other choices of imphc utta methods, but conside 
more costly (per step) than the typical ere on average less 
two f evaluations and right-hand side 

e implicit Runge-Kutta methods is their one-ste 
tage in starting up and when crossin 
they are able to achieve high o 

algorithms are of fi order, but not al% [I 
tests, e.g., Enright, 11, Lindberg /49 1, h 

variability of order can be very much important in stiff $3 solvers. 
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Collocation methods and block methods suffer from the same inefficiencies in the 
algebraic system solution as the implicit Runge-Kutta methods. In some cases, 
storage of several Nx N matrices is required. For composite multistep, a very 
similar difficulty arises because of the different individual methods used. However, it 
is possible to avoid this difficulty, at least for 2-stage composite methods, by choos- 
ing the coefficients PO to be the same in each stage 11401. With the inclusion of a 
variable order, algorithms based on these methods appear to have some features 
superior to BDF algorithms. 

Extrapolation methods offer a natural way of achieving arbitrary accuracy 
orders, but again at a high cost in the algebraic system solution. In solving j, = f, 
the Newton matrices for the individual steps all have the same form, I - h&J, but 
the values of /& vary widely among the step sequences used within each major 
step. Thus the costs in storage and/or matrix operations is necessarily considerably 
higher (per step) than for ordinary linear multistep methods. However, the larger 
step sizes often outweigh this cost. Exactly the same comments apply to averaging 
methods. 

Multiderivative methods, especially second derivative methods, can be formed 
with very attractive order and stiff stability properties. The price one must pay is in 
dealing with the second derivative, which for j = f given by 

and possibly with higher derivatives, if any are involved. The effect of this on the 
Newton iteration is that the Newton matrix is, in general, a complicated com- 
bination of the various partial derivatives of f. If the system is autonomous (f, = 0), 
or is made autonomous, then an approximate Newton matrix for a second- 
derivative method can be formed as a quadratic polynomial in J = fy, and a con- 
siderable reduction in the effort to do the Newton iterations is possible. However, 
the effort and storage are still greater than for, say, BDF methods. 

Blended multistep methods composed from Adams and BDF formulas appear to 
have all the desirable accuracy and stability properties of second-derivative 
methods, but almost none of the obstacles. For jr = f, the formulas and the Newton 
iteration to solve them tolerate errors in the Jacobian matrix, and allow for the use 
of sparse structure. Each Newton-like iteration requires only one f evaluation, but 
two linear system solutions (with the same matrix I - yJ). 

Fitting methods appear to be useful only when the number of stiff eigenvalues is 
quite small, say less than 10, and only when fairly good estimates of those eigen- 
values are available. The process of fitting the free parameters to the given exponen- 
tial modes is rather complicated and must be repeated frequently throughout the 
integration, generally. 

Hybrid methods include so many different possibilities that it is presently 
impossible to make general comments about them. But a few isolated studies of 
hybrid methods have shown some promise. 

Partitioning methods appear to be suitable for general use only if they include a 
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reliable automatic way of constructing the linear transformation and the 
of the transformed dependent variable vector. So far, methods for doing th 
that the number of stiff modes be a fairly small fraction of the ~r~blern size iV. 

One-leg methods are closely related to linear multistep methods and share most 
of the properties which make the latter attractive for stiff systems. Moreover the 
variable step forms of one-leg methods seem to be more stable. 
details are fully worked out, certain one-leg methods are likely to be fully com- 
petitive with present linear multistep methods. 

3. SOFTWARE 

We now turn to software for solving stiff ordinary differential equations. In so 
doing, it is appropriate to give some caveats and a brief history of stiff solvers. Then 
each of several groups of solvers will be described. 

The following does not constitute an endorsement of 
does it necessarily imply that unnamed solvers are not w 
can say that if you are using a 1Zline solver for differential equations in a~ytb~~g 
bigger than a hand calculator, you should consider using one of the cited packages 
instead. Recently, we have noted that there is commercially available ‘“software” 
for differential equations with no error control, a user-specified fixed step size, no 
warning messages, and so on. We strongly advise against using such programs, 
even on a personal computer. The reasons are straightforward. For all but trivial 
problems, such programs cannot be sufficiently reliable for accurate ~om~utati~~a~ 
results. In short, consider one of the solvers mentioned here. 

A. A Brief Historical Background 

We now turn to a short history of backward di~erentiati~n form~ia-based 
solvers. This is an attempt to answer some questions which are frequently as 
us. We also intend to give the reader some historical perspective of 0 

TQ our knowledge, the first notion of stiffness and the first formal 
for solving stiff ODES was reported by Curtiss and Hirschfelder [347. They use 
the term stifSfor ODES because the corresponding servome 
Gear became interested in stiff problems while visiti 
Laboratory. He developed a software package that used backward differe~t~ati~~ 
formulas (BDFs), which had not enjoyed much fa among numerical analysts, 
e.g., [66]. Gear’s pioneering code was called DIES 

Subsequently, Gear revised DIFSUB while visitin tanford University in 1959. 
The new code was called STIFF. R. 5. Gelinas, at Eawrence Livermore 
Laboratory, had been having trouble with some chemical kineti 
acquired STIFF and found that it could solve his kinetics models. 
had enlisted his co-worker, Hindmarsh, as a collaborator. consultation from 
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Gear, they rewrote STIFF and called the new package GEAR. By 1974, the code 
GEAR had gone through two revisions by Hindmarsh 1671. 

All of these packages use BDF for the stiff solver option, and explicit Adams 
predictors and implicit Adams correctors for the non-stiff option. They also use a 
fixed time step size h for several steps. Then, they test to see if h should be changed 
dynamically to effect efficient and accurate solutions. They can also dynamically 
change the order of the formula of integration for efficiency and accuracy. These 
codes differ from one another in several ways-tuning paramters, code structure, 
linear algebra routines, user interfaces, and overall robustness. 

Several variants of GEAR had been developed by 1976. GEARB, GEARS, and 
GEARBI differed from GEAR in the linear algebra routines [71, 70, 1291. Con- 
sequently, problems of various structures could be attacked with economy of both 
storage and computer time. Other variants of GEAR were designed to take advan- 
tage of computer architecture and/or problem structure-GEARBIL, GEARIB, 
GEARV, GEARST [68, 69, 70, 73, 1031. 

In 1973 Byrne was a summer visitor at Lawrence Livermore National 
Laboratory. There Hindmarsh, R. P. Dickinson, Jr., R. J. Gelinas and others were 
concerned with diurnal kinetics problems. In these, the chemical reactions among 
minor species were turned on by the rising of then sun and turned off at sunset. 
They felt that averaging, pseudo-steady-state methods, and periodic restarts were 
not the answer. The GEAR package used fixed step size for several time steps. 
Then, it adjusted the step size by interpolating previously computed values. For the 
diurnal kinetics model, the implementation of this fixed-step-interpolate strategy 
was not stable. One consequence was the initiation or’ a project to develop an 
integration package for stiff ODE systems with the capability of adjusting its time 
step after each integration step, Because this ability to change the step size at each 
time step is built into the formula, we call this a variable-step method. 

The variable step BDF methods were incorporated in EPISODE and its variants. 
These developments were intermingled with the final revisions of GEAR and its 
variants [73]. 

In 1976 we collaborated in a report on calling sequences for stiff ODE solvers 
[78]. This report was based on several discussions and workshops held during 1975 
and 1976. This evolved into a project to develop the package called ELSODE. Sub- 
sequently, as a result of a wider effort to standarize the user interface for ODE 
solvers [12], this evolved into LSODE [74]. In many ways, LSODE is similar to 
GEAR, Rev. 3. However, LSODE has a user interface that is much more flexible 
than GEAR, Rev. 3. LSODE also uses the LINPACK linear algebra packages, 
dynamic storage allocation, more extensive modularization, and a wide range of 
types of error controls. 

Of course variants of LSODE have been developed to handle problems of 
various structures, as we shall see, 

So far, we have given a rather quick sketch of ODE software along just one path. 
Even in the BDF tree, there are other computer codes and developments. Valuable 
contributions were also made by R, W. Klopfenstein and F. T. Krogh [90, 92, 107, 



931. For variable step BDF, Brayton, Gustavson, and Hachtel Ill] and Hachtei, 
Drayton, and Gustavson [64] predated EPISODE with their papers on a method 
ior solving differential-algebraic systems. Gear [ 561 had looked at solving differen- 
tial-algebraic systems with DlFSUB. Riibncr-Peterson [I 16-j had also developed a 
RDF scheme for solving differential-algebraic systems. Curtis [33] dexzlopcd F’.4C- 
SIMILE, which solves certain kinds of differential-algebraic systems with a BDF 
method. (Ysrver installed a sparse solver (MA28) in GEAR, Rev. 2 within FOKSIM 
[26]. Krogh and Stewart [94] developed a new impicmentation oi BDF mcthcds 
based on stability with respect to Newton matrix errors. There arc other such 
developments. too numerous to mention here. 

Now, let us see what software is currently readily availab!c and the type or types 
of problems each package can solve. 

LSODF [74] is the basic member of the LSODE family called ODEPA!X 
[76]. ISODE is desgined to solve stiff and non-stiff problems in the canonicai form 
(1.1). (1.2). For these problems, the Jacobian matrix may be either dense (very few 
zero elements) or banded. 

LSODI [74, 75: 761 is intended to solve Iincarly implicit ODES of the form 
( 1.143, ( 1.15). LSODI aliows A and g? to both be either dense or banded. 

If WC want to solve problems of the form (1.1) (1.2) with a sparse Jacobian 
matrix. then we could use LSODES. This package uses components of the Yale 
Sparse Package [*?S. 46 J. 

LSODA has a novel feature. It automatically switches between stiff (BDF) and 
non-stiff (Adams) methods according to an algorithm developed by Pctzold [ t !()]. 
The basic purpose is to relieve the user of the responsibility of determining whethc:. 
and also whcrc, a problem is stiff or non-stiff. For cxamplc, LSODA woulo se&t 
the non-stiff method in transient regions and the stiff methods elsewhere. A, for 
gcncral problem structure, the problem class addressed is essentially the same as 
that for LSODE (full and banded Jacobians). 

LSODAR is based on LSODA. but includes a rootfinder. It gives the tiscr the 
capability of computing the zeros of a set of functions : z,(/. y): ! < i < nQ. This is 
calied the ,T-sfop capability by F. 7’. Krogh, whom we believe to have coined the 
term. For exampie. WC could set %,:= J, -- C, in the simulation of a continuously 
stirred tank reactor (chemical) or CT where the ideal js to stop the rezctions z.nd 
recover the product when one or more components I:, have reached a certain moic 
fraction C,. Other examples might include changing the system of differential 
equations when a particle reaches a container ~211 in a tracking problem. Krogh 
has used the example of extending an antenna and revising the center of gravity sf ;? 
space vehic!e when it reaches a prescribed position. 

LSOIBT is designed for problems of the form (1.14) (!.15). However, LS0iB’T 
assumes that A and gy are both block-tridiagonal in structure. By this. ‘6~ sin@\: 
mean that thcsc matrices can be partitioned into n X~J blocks. These blocks in turn 
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form three stripes-the main block diagonal, and the principal upper and lower 
block diagonals. As we noted previously, this problem structure arises in the finite 
element solution of one dimensional PDEs and elsewhere. 

This LSODE family, also known as ODEPACK, is available from the National 
Energy Software Center, whose address is given in the Appendix. 

C. EPISODE and Its Variants 

For some problems, changes occur frequently or dramatically. Consequently, the 
ability to change the step size at each integration step can be advantageous. That is 
precisely why we develop the EPISODE family. EPISODE [20, 793 is intended for 
problems of the form (l.l), (1.2) with dense Jacobian matrices. EPISODE does 
have a non-stiff option. We generally suggest that EPISODE be tried after LSODE 
has failed on a stiff problem with occasional fronts, because the overhead for 
EPISODE is frequently higher than that for LSODE. Moreover, the user interface 
is not as flexible as that for LSODE. Finally, EPISODE does not use the modern 
linear algebra routines that LSODE does. 

EPISODEB [21] treats problems with banded Jacobians of the same type as 
EPISODE. We would use EPISODEB after the banded option of LSODE failed. 

EPISODEIB [19] is designed to solve banded problems from the class that 
LSODI solves. As another member of the EPISODE family, it is intended for use 
on problems with fronts. 

EPISODE, EPISODEB, and EPISODEIB are all available from the National 
Energy Software Center. 

D. Other Descendants of GEAR and EPISODE 

One of the GEAR family has not yet been superseded by a corresponding mem- 
ber of the LSODE family. That package is GEARBI [70], which is based on 
GEAR, Rev. 3. GEARBI is designed to solve problems with a general block struc- 
ture by block successive overrelaxation (block SOR). 

DGEAR is the stiff ODE solver in the IMSL library [SS]. This package is based 
on GEAR, Rev. 3, which is a precursor of LSODE. DGEAR handles both stiff and 
non-stiff problems. For stiff problems, the structure of J may be banded or dense. 

The Numerical Algorithm Group (NAG) library [104] lists five stiff ODE 
solvers. To some extent, their purposes correspond to those of the members of 
ODEPACK (the LSODE family). The codes and purposes are as follows: 

l D02EAF-Integration over an interval. 
l D02EBF-Integration over an interval, with intermediate output. 
l D02EGF-Integration until a component of the solution reaches a 

prescribed value. 
l D02EHF-Integration until a function of the solution is equal to zero. 



F-A comprehensive integration 
above codes). 

These routines are based on GEAR, Rev. 3 [60]. 
DEBDF is a driver, which calls a modified version of LS E. The complete 

DEBDF package is a member of the SLATEC library, which may be obtained from 
the National Energy Software Center. The DEBDF package is also a member of 
DEPAC [128]* 

A recent descendant of EPISODE is a code called TORANAGA [4]. 
variable-step variable-order BDF methods, but differs from most other stiff 
because it is designed for an environment of large scale problems. It uses a memory 
management package, requires the user to supply whatever linear system SQ 
appropriate, has an elaborate dump/restart, and numerous o 
puts. 

The software package SPRINT [7] is designed for both 
SPRINT is derived from LSODI and LSODES. 

E. Differential-Algebraic System Solvers 

Software for differential-algebraic systems is now readily available. Earlier, we 
saw that systems such as (1.12) (1.13) can arise from solving parabolic PDEs 
the numerical method of lines via a Galerkin procedure. They can also arise in solv- 
ing mixed parabolic-elliptic systems of PDEs or directly in certain models of reac- 
tive flows or electronic networks. In the past a version of GEAR, called GEA 
[68], was used to solve differential and differential-algebraic systems of the linearly 
implicit form in numerical method of lines codes for PDEs. LSODI has also been 
used for this purpose. Earlier work [ 56, 64, 11, 116, 131, 91] focused on similar 
systems of differential-algebraic equations that arise directly in the situation of corn-. 
plex electrical circuits. 

More recent work on differential-algebraic systems has led to the development of 
DASSE [IO9], a differential-algebraic system solver. DASSL is intended for the 
solution of problems of the general form 

g(t, y, jr)=0 (3.1) 

Y(b) = 90 (3.2) 

jr(to) = PO. (3.3’) 

Here, the data (3.3) may be either prescribed or computed from (3.1)-(3.2). 
case, (3.1)-(3.3) must be consistent, i.e., g(to, yO, pO) = 0. It is certainly important to 
note that differential-algebraic systems are not as straightforward as we might 
suppose [lOS, 583. 
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F. Runge-Kutta Codes 

Runge-Kutta codes for stiff ODES are not generally available in the more com- 
mon software libraries in the United States. Moreover, some of the Runge-Kutta 
codes reported on elsewhere are listed as experimental [53]. 

Three codes based on implicit Runge-Kutta methods of the traditional type have 
become well known. DIRK [l] uses diagonally-implicit RK methods with fixed 
(selectable) orders up to four. STRIDE [14] uses singly-implicit methods in a 
variable-order manner, up to order 15. An early code, COLODE [S3, 841 uses fully 
implicit RK methods. 

A number of solvers based on Rosenbrock-type methods are mentioned in the 
literature. Kaps and Rentrop [87] mention GRK4A and GRK4T. Gottwald and 
Wanner [62] mention ROW4A. Shampine [123] mentions DEGRK. All of these 
have embedded methods of orders 3 and 4. Comparison tests on these and other 
stiff solvers are given in Kaps, Poon, and Bui [SS]. 

G. Blended and Composite Multistep Codes 

Blended linear multistep methods are best represented by the code BLEND 
[ 132). It uses a variable-order blend of Adams and BDF methods, of order up to 7. 

An early cyclic composite multistep code is STINT [136, 1371. It is also variable- 
order with orders up to 7. More recent work on cyclic composite methods has 
focused on practical implementation issues, and has resulted in a code called 
ODIOUS [140, 1391. However, the authors of ODIOUS appear to regard it as 
experimental, and are still testing various coefficient choices in it. 

H. Extrapolation Codes 

An early extrapolation code is IMPEX2 [98], which uses an extrapolated 
implicit midpoint rule. A more recent code is METANl [S], which uses a semi- 
implicit midpoint rule. A variant of the latter was also developed for the case of a 
sparse Jacobian, and called METASl [39]. The code LIMEX [41] is intended to 
solve differential-algebraic systems in the linearly implicit form (1.14), with A 
singular and constant. 

1. Second-Derivative Codes 

An early implementation of second-derivative methods was the solver SDBASIC 
[48]. A more recent and more efficient implementation is SDSTEP [ 1171. Both are 
variable-order, with orders up to 9, and require the user to supply the Jacobian 
matrix exactly. 
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4. EXAMPLE PROBLEMS AND Ccxx USAGE 

ere we present several problems for computation. Each is easily desc~~~e~. 
owever, we feel these examples, as presented, represent a cross section of real 

problems we have seen over the span of our careers. In what follows, we g 
do not rewrite or rescale the ODES, because we beheve the avera 
Some problems even have a closed form (analytic) sohuion, e.g., 
Despite their simplicity, these examples often present ~~t~rest~~g lessons, e.g. 
significance of features in a solution, importance of repeated regions of stiffness, 
diurnal kinetics, incompatible boundary and initial conditions, and so on. The basic 
problems are described in Subsection A. The numerical results an 
discussion are given in Subsection B. 

A. The Example Prohlems 

oberrson’s Problem 

We have already seen an example of a neutrally (co~d~t~o~a~~y~ stable, dense 
DES in normal form. For our first problem, we use 
), (1.4) on the time interval 0 <t<4x 107. By choosing this interval, 

we place severe demands on the error control and step size control of the solvers. 
The reason is this: if a zero or near-zero eigenv oes positive in the 
numerical calculations, the system becomes unstable. as t gets larger, we 
expect the step size h to increase dramatically for e need to increase 
step size for efficiency and the simultaneous need rol 
run somewhat counter to one another. Yet, this is precisely me 
we look for in high quality ODE software. 

Problem Z-The Field Noyes Chemical Oscillator 

This is another small, dense system in normal form. wever, it is ~ote~t~al~~ 
iconoclastic, because there are periodic transients folio 

sents a chemical oscillator, a chemical 
t the concentrations of three chemical species vary ~~r~od~c~~~~ in. 
less form the system is [52], 

9’ = s(y’ - y’y2 + yi - q[yl-y) 

y-2 = (y’ - y* - yy )I‘$ 

y = w(yl - y3), 

where 

s = 11.21, w = 0.1610, 
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The initial data we use are 

y’(O) = 4.0, y2(0) = 1.1, y3(0) = 4.0 (4.3) 

and are due to Enright and Hull [SO]. 
To connect this model with the chemistry somewhat, we note that y’ is the scaled 

concentration of bromous acid [HBrO,], y2 is the scaled concentration of the 
bromide ion [Br-1, and y3 is the scaled concentration of cerium IV [Ce(IV)]. By 
looking at the reaction rate coefficients in (4.1) and (4.2), we expect to see three dis- 
parate time scales in the solution. By virtue of hindsight, we know that if the output 
points are too far apart, we can expect to lose some features in the solution of this 
problem. 

Problem ~-TWO Species Diurnal Kinetics 

This is also a small, dense problem in normal form. This problem is meaningful 
to us because it and similar problems led us to begin our collaboration and the 
development of the EPISODE family. This model represents the Chapman 
mechanism for the generation of ozone and the oxygen singlet. It can be a severe 
test for a stiff ODE package. The symbolic representation for the four reactions in 
this model are [43], 

o+o,~ 03, k, 
o-to,- 202, k, 

0, -5 20, k 

O++ 0+02, k4 

(4.4) 

where ki denotes the reaction rate for i= 1,2, 3,4, it4 denotes some molecule 
required to carry off excess energy, /iv indicates a photo chemical reaction, and 0, 
O,, and O3 represent the oxygen singlet, oxygen, and ozone, respectively. In the 
example, the concentration of O,, denoted by CO,], will be held constant, the rates 
k, and k, are fixed and k3 and k4 vary diurnally. If y’ = [0], y* = [O,] and 
y3 = CO,], the system of ordinary differential equations is 

j’ = I?‘($, y*, t) E -k, y1y3 -k, y’y* + Zk,(t) y3 + k4(t) y2 

j2 = R*(yl, y*, t) = k 1 y1y3 - k2 Y~Y* -k,(t) Y*, 
(4.5) 

with 

y3 = 3.7 x lOi 

k, = 1.63 x lo-l6 

k, = 4.66 x lo- l6 
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exp[ -q/sin wt], ki=jo sin cot > 

i ) sin ot < 0, i=3,4 

a3 = 22.62, a4 = 7.601, (4.6) 

co = ~c/43200 

and 

y’(0) = 106, y’(0) = 1o12. 

The constant 43,200 is 12 h measured in seconds. Graphs of the solution of this 
problem appear in Fig. 4.3. Although this problem only involves three chemical 
species and just two of these have concentrations varying in time, it does have 
features of larger problems: 

e The Jacobian matrix is not a constant. 
* The diurnal effect is present. 
* The oscillations are fast. 
m The time interval used is fairly long, 0 < t < 8~64 x lQ5, or 10 days 

Problem 4.-A Kidney Model 

The following example was posed as a two point boundary value pro 
[I191 and is attributed to Ivo Babuska. In [S] the problem is given as 

j’ = a(y3 - yl) y1/y2 

j,L -a($-yl) 

j3 = [b - c(y3 - y5> - ay3(y3 - y’)]/y4 

j4=a(y3-y’) 

j5 = - c( y5 - y’)/d, 

with 

a = 100, b = 0.9, d= IO. 

The initial data here are 

y’(0) = g(o) = g(o) = 1.0 

f+(O) = - 10. 
(4.10) 

581/70/l-3 
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In the original problem, the remaining condition was y3(1) = y’(1). However, for 
O<ttl, we take 

~~(0) = 0.990268835 (4.11) 

y5(0) = 0.99 (4.12) 

y5(0) = 0.9 (4.13) 

in turn. For the last two choices of the initial value, the problem is reported to be 
stiff. For the first, it is reported to be non-stiff [S]. 

Babuska and B. Kellogg have told us that this model is indeed similar to a three 
tube model of a kidney. Solute and water are exchanged through the walls of the 
tubes. Here y’, y5, and y3 represent the concentration of the solute in tubes 1,2, 
and 3, respectively. y2 and y4 represent the flow rates of tubes 1 and 3. We expect 
this problem to behave like other first order two point boundary value problems. 

Problem 5-A Laser Oscillator Model 

This pair of coupled equations represents a model of a ruby laser oscillator. If we 
let 4 denote photon density and n denote dimensionless population inversion, then 
we can write 

Pi= -n(a#+P)+y 

fj=&pn-o)+z(l+n), 

where the parameters are as follows: 

a = 1.5 x lo-‘*, /3=2.5~10-~ 

y =2.1 x 10-6, p = 0.6 

o = 0.18, z = 0.016. 

The initial conditions are 

(4.14) 

(4.15) 

n(O) = - 1 
(4.16) 

(b(O) = 0. 

This problem is challenging because it is stiff initially, but mildly damped and 
oscillatory later. It can be shown that as t + co, n-+0.3- 1.155 x lo-l4 and b--+ 
3 x lo’* + 0.1798, the steady state values. It suflices here to solve for Og t < 
0.7 x lo6 ns = 0.7 ms. Time t is in nanoseconds. 

Problem 6-Burgers’ Equation 
We have seen the basic idea of the numerical method of lines in Section 1. It is 

not particularly difficult to see that the numerical method of lines can impose quite 
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a few reqniremcnts on a stiff ODE solver. Among them is the need to track travel- 
ing waves. 

ith this in mind, we now describe a partial differential equation with traveling 
wave solutions. Burgers’ equation [6] for u = U(X, t) is 

u, + uu, = vu,*, O<xXl, t>,o (4.i-l) 

with subscripts denoting partial differentiation. An exact solution can be s 
e 

u(x, t)= lfexp 
i i 

:-$ (4.18) 

The initial and Dirichlet boundary conditions are taken directly from (4.18). Note 
that the solution is a traveling wave whose speed is dx/dt = 3. 

By the way, Burgers equation is a very good example for several reasons: 

* It is nonlinear. 
0 The exact solution of the PDE is known [6]. 
a It can be thought of as a hyperbolic problem with artificial diffusion for 

small v [32]. 
0 It is sometimes used in boundary layer calculations for the flow of viscous, 

fluids, 
5 It is very nearly a standard test problem for PDE solvers. 

The simplest method of spatial discretization is to discretize along the x axis with 
a uniform mesh and to replace all spatial derivatives in (4.1’7) by (say) centered 
finite difference analogues. Thus, if we take 

1 A=--..- 
N-b1 (4.69) 

Ui( t) cc= u(iA, t), i= 0, I,..., N+ 1 

then a system of ODES for the method of lines (MOL) approach to solving (4.17) 
is 

zhi= -(U,/2A)(Ui+l-Uj-])+(V/d2)(Ui+1-2Uj+Uj-l), 

~~(0) = [ 1 + exp( id/2v)] - ‘, i = 1, 2,..., N 

u,(t)= [1+exp(-t,/4v)]-1 

i = 1, 2,..., N 

(4.20) 

(4.21) 

(4.22) 

(4.23) 
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where (4.21)-(4.23) are taken directly from (4.18) and where ~~=u,(t). Although 
the problem (4.20)-(4.23) is of the desired form, its exact solution is not known. 
The exact solution is known only for the PDE. 

Finally, we can note by inspection that the system (4.20) has a tridiagonal 
Jacobian matrix. The subdiagonal elements of the Jacobian matrix are 

a;t. El. v -.L=.-i+-- 
hi- 1 24 A2 

while the diagonal elements are 

(4.24) 

(4.25) 

and the superdiagonal elements are 

(4.26) 

for i = 1, 2,..., N, with appropriate exclusions and substitutions of (4.22) and (4.23). 
Another method to reduce Brugers equation (4.17) to a system of ODES was 

described by Chin, Hedstrom, and Karlsson [32]. Their simplified Galerkin 
method uses piecewise linear B-splines or chapeau functions as basis elements for 
both test and trial functions. The inner product is taken by applying Simpson’s rule 
with the quadrature points taken as the break points for the basis functions. The 
system of ODES then has the form 

with 

Ali = g( t, u) 

A = (l/6). (3 diag[l, 4, I]> an Nx N tridiagonal matrix. 

If z+(t) is the numerical solution of (4.17) at xi, then 

g’= - [uf, 1 - uf- ,-J/44 

+ (V/d2)[Ui, I- 224, + ui- 11, i = 1, 2 )...) N. 

Note that this is almost the same as the right-hand side of the finite difference 
equation (4.20). The boundary and initial data can be taken from (4.21)-(4.23). The 
Jacobian matrix J for g follows from the above and is described by 

agi 
-=t~-~/2A+v/A~, 
dU,-~ 

!?& -31/,4~ 
I 
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and 

agj 
-= -uj+,/2A+v/A2. 
h+ 1 

The Newton matrix is 

A - h&J 

since it is a linearly implicit system of ODES. Note that this procedure can also be 
thought of as a collocation procedure. One of the tricks was to interpolate the u2 
term rather than to work with u [135]. 

Problem T-Two Species Diffusion-Diurnal Kinetics: One Dimensional 

The main objective of this problem is to combine some of the features of 
Problems 3 and 6. This example is another from the general area of transport [9] 
and is rather similar to one addressed by Chang, Hindmarsh, and Madsen [3E]. 
This is a diffusion-reaction problem and has no convective term. Such problems are 
fairly common. A description of ci, the concentration of the ith minor c 
species in the upper atmosphere, is represented by 

g=-& K(z): +R’(c, t), i I i = 1, 2 )...) 1, 

where z denotes the elevation above the earth in km, and (a/dz)[K(z) &‘/iiz], the 
diffusive term, accounts for vertical transport by turbulence. Horizontal ~~~ve~t~~~ 
is neglected in this simple one-dimensional model. The term P(c, I) is the reaction 
term in this system, where c = [c’, c2 ,..., c’]’ is the vector of concentrations. 
Systems of this type have been discussed by Chang et al. [31] and solved in the 
manner described below. 

In this prototypical example, we take I = 2, 30 ,< x d 50, ft<8.64x104 (1 
measured in seconds), and K(z) = exp(z/5). lOmE (km2/s), subject to the initial con- 
ditions 

cyz, 0) = 106y(z), c2(2, 0) = lOyJ(z) 

y(z)=l-(~)I+f(f+y. 

Boundary conditions are taken to be 

g (30, t) = g (SO, t) = 0, i= 1, 2. 

(4.28) 

The reaction terms R’(c’, c*, t) = R’(c, t) are taken to be identical to those in 
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Problem 3, given by (4.5), (4.6) with c1 = [0], c2 = [O,], and a constant third 
species concentration c3 = [0,] = 3.7 x lo6 (denoted y3 in (4.5)). 

TO generate a system of ordinary differential equations, we will discretize the 
interval 30 <z < 50 and replace all of the spatial derivatives in (4.27) with centered 
finite differences. Let M = 50, say, set dz = 20/M, and set zj = 30 +j(dz) for 
O<j<M. Next, let c;(t) be the approximation to c’(z~, t) obtained by solving 

r~=(dz)-2[Kj+1,2cj+1-(Kj+1,2 +Kj-I/*) Cjf Kj-l/*CJ:-I] +R’(C, t) (4.30) 

for i = 1,2; j= 1,2 ,..., M and with Kj, 1,2 = K(zj, r,*) = K(30 + [j _+ l/2] dz). The 
boundary conditions are to be replaced by ch = ck in the ODES for cf and by 
C ~-1=c~+I in those for CL. The system of N= 2A4 ODES can be specified by 
setting y(t) = [c:(t), c:(t), c:(t), c:(t),..., CL(~), &(t)lT. This procedure leads to the 
following system of ODES. 
At the left hand boundary, we obtain 

Y = (~4-2c~3,2 Y3 - w3,2 + K1/2) Y1 + K1,2 Y31 + my12 Y2% t1 (4.31) 

g2 = (AZ) -*[K3,2 y4 - (K3,2 + KI,z) Y2 + K1/2 Y41 + R2b1> Y2, I). (4.32) 

For 2 6 I < M - 1 (i.e., on the interior of the interval), 

~“-‘=(dz)~2[KI+,,2Y2’+‘-(KI+1,*+K~~~,2)y2’-’f~~~,,2Y2~-3l 

+ P(y2’- l, y*/, t) (4.33) 

1;2’=(dz)-2[K~+1,2y21+2-(K~+~,~+K~~~,2)y11+K~--1,~~21-21 

+ P(y2’- l, y”, t). (4.34) 

At the right-hand boundary, we obtain 

Y ~2M-1=(d~)-2[KiCI+1,2y2M-3-(K~+1,2+K~-~,~)y2M-1+KlcI-~,~y2M-31 

+ R’( y*- I, y*y t) (4.35) 

Y ~2M=(d~)-2[KM+1,2y2M-2-(K~+~,~+K~-~,~)~2M+K~-~,~~2M-21 

+ R*( y*M - 1, yy t). (4.36) 

This system is in the desired form jr = f(t, y) and is subject to the initial conditions 
taken from (4.28), 

y2’- ‘(0) = 109(30 + i AZ) 
y”(0) = lo15430 + i AZ) I ’ 

i = 1, 2 ,..., M. (4.37) 

In summary, we have reduced the system of two parabolic PDEs (4.27), subject to 
the initial and boundary conditions (4.28) and (4.29), to a system of 2M ODES 
(4.31)-(4.36), subject to the initial conditions (4.37). The key step was the dis- 



STIFF ODE SOLVERS 37 

cretization or chopping up of the regime in the z direction. In particular the 
approximation 

i K(zj) +)cx (AZ)-21[K(zj+,,,)(c;+, -c;) 

- K(zj- 1/2)(cf- CJ- I)] 

is important. 
Finally, we remark that the Jacobian matrix for this system is a 5-diagonal 

matrix: the main diagonal, the two adjacent super diagonals, and the two adjacent 
subdiagonals contain all of the nonzero elements. This can be verified by cornp~t~~g 
J or simply by noting the couplings in the ODES. The structure of this matrix is 
very important in the solution of large systems as we noted earlier in Section 1. 1; 
particular the centered finite difference discretization of two coupled parabolic 
PDEs of type (4.27) always leads to a 5diagonal matrix. Note that ordering by grid 
point and then by species (the reverse of the order above) destroys this structure. 

Problem S-Two Species Dujjfusion-Diurnal Kinetics: Two Di~e~sio~~i 

This example is based on a pair of PDEs in two dimensions, representing a sim- 
ple model of ozone production in the stratosphere with diurnal kinetics. (See also 
[76] for comparison tests on this problem.) There are two dependent variables ci, 
representing concentrations of O1 (the oxygen singlet) and 0, (ozone) in 
moles/cm3, which vary with altitude z and horizontal position x, both 
kilometers, with 0 d x d 20, 30 6 z B 50, and with time t in seconds o < t 6 864 
(one day). These obey a pair of coupled reaction-diffusion equations 

K/,=4x 10-6, K,(z) = lO-*e”“, 

where the R’ (cl, c2, t) are identical to those in Problems 3 and 7 (see ( 
We impose homogeneous Neumann boundary conditions 

&‘/8x = 0 at x=0 an x = 20; 

aci/az = 0 at z=30 and z== 58. 
(4.40) 

The initial conditions are given by polynomials that are slightly peaked in the cen- 
ter and consistent with the boundary conditions 

c’(x, z, 0) = 106cc(x) D(z), c2(x, 2, 0) = lo”2ct(x) P(z) 

a(x)E1-(0.1X-1)2+(0.1X-1)4/2 

p(z) = 1 - (0.1~ - 4)2 + (0.1~ - 4J4/2. 

These initial values agree with observations fairly well. 
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We reduce the PDEs to ODES using spatial central differences and a rectangular 
grid with uniform spacings, dx = 20/( J- 1) and dz = 20/(K- 1 ), as in Problem 7. If 
c& denotes the approximation to ci(xj, zk, I>, where xj=(j-l)dX, 

z,=30+(k-l)dz, l<.j<J, ldk<K, then we obtain the ODES 

t;,k = Ri(cJk, c& t) + (Kh/dx2)(cj+ I,k - 2~;,~ + c;- ,,k) 

+ (dz)-2[K,(zk+ l,&;,k+ 1 - c;,k> - &czk- 1,&;,k - $,k- 111. (4.42) 

At the boundaries, we take: 

c' 0,k = ‘;,k 9 C;+ l,k = &I,,+, Qk and 

cjo= c$, i 
‘j,K+ 1 = $,K- 19 Vj. 

(4.43) 

The size of the ODE system is N= 2JK. The variables are indexed first by species, 
then by x position, and finally by z position. Thus in jl = f( t, y), we have 

Cjk=ym with m=i+2(j-1)+2J(k-1). 

The underlying assumption is that J is no bigger than K to keep the bandwidth 
minimal. 

A strategy similar to this was described by Chang et al. [31] who solved a 
system of over 14,000 ODES in a study of the effect of supersonic transports on the 
ozone layer. The form of the PDEs was (4.38). 

Problem 9-A Two Phase Plug Flow Problem 

Here we are concerned with a pair of coupled, implicit differential-algebraic 
equations for an unusual pipeline problem [24]. Briefly, we are interested in piping 
a stable foam from a holding tank to a processing plant. The foam is composed of 
gas bubbles dispersed in a liquid phase. If the foam (core phase) is to be suc- 
cessfully piped, it must be surrounded by an incompressible lubricating film 
(annular phase). Moreover, the pipeline pressure must be sufficiently high to keep 
the core from expanding to touch the wall. 

We can develop this model by using the universal velocity law for very large 
Reynolds number Row through a smooth pipe for the annular phase. For the 
viscous core phase, we assume plug flow and expansion in the radial direction only 
when pressure decreases. We also assume a no slip condition at the interface 
between the two phases. 

The equations describing the problem outlined above are 

n[R/(2p)]“‘(R - yc)“( -dP/d~)~‘~ 

x {2.51n[(pR/2)“2(y,/,u)(--dpldX)1~2-5]+10.5) 

- CbQ,, + f’oQ,dl - bYPI = 0 (4.44) 
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27c[R/(2p)-J1”( -dP/dx)“*{(2SRy, - 1.25y:) 

x ln[(pR/2]‘/2(y,/~)( -dP/dx)“2 - 5] 

+ 3Ry, - 2.125~: - 13.6 

x Rp[2/Rp)]1’2(-dP/dx)-1’2) - &,=O. (4.45) 

In this system, the prescribed parameters are 

R = pipe radius (cm) 

p = density of the annular phase (g/cm3) 

p = viscosity of the annular phase (poise) 

P, = inlet or initial pressure (dynes/cm2) 

Qa =inlet flow t f ra e or annulus or wetting agent (cm3/s) 

Q,, = inlet flow t f th ra e or e core or emulsion (cm3/s) 

b = inlet volumetric fraction of the liquid in the foam. 

The equations are to be solved for 0 <x 6 L, where L is a prescribed length ( 
corresponding to several kilometers. The values to be computed at various di 
ces down the pipe are pressure P (dynes/cm’) and the thickness of the annuar phase 
yC (cm). It is also convenient to know the pressure gradient, but not essential. 

There are several interesting features in these equations. The pressure gradient 
a’P/dx appear only with a negative sign and under radicals. (If dP/dx >O, the 
system breaks down as we would expect when invoking Darcy’s law.) The radicals 
appear both in the arguments of natural logarithms and outside the argu 
Neither the initial value for y, nor for dP/dx is prescribed. Flow 
corresponds to vanishing or negative arguments of the natural logarithms. 
choking would occur for a prescribed foam if the pressure gradient were t 
in magnitude, the pipe radius were too narrow for the length L, or the initial 
annulus thickness were too small. In particular, we note that these equatio 
coupled, implicit differential-algebraic system, which appears to be non-& 
typical data are as follows: 

Case 1. This is an example of a normal flow. 

R = 4.572 x IO’ cm 

p = 8.14 x 10-l g/cm3 

p=9.8x 10w2poise 

b=6.06x 10-l 

Qco = 1.1531 x lo6 cm3/s 
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Q, = 2.035 x lo5 cm3/s 

P, = 1.457 x 10’ dynes/cm2 

L = 8.047 x lo6 cm. 

Case 2. This is an example of a flow which choked. Parameters not listed have 
the values specified in Case 1. 

b=3.45x lo-’ 

Q,, = 1.7153 x lo6 

Q, = 3.027 x 10’ 

P, = 1.378 x 10’ 

L = 3.2188 x 107. 

Problem IO-Troesch’s Two Point Boundary Value Problem 

It may seem unusual to see a two point boundary value problem listed as a stiff 
ODE. We will use essentially the same technique as in [130], which is in some 
sense tantamount to using time t as a continuation parameter to solve an elliptic 
problem. 

The problem to be solved is 

O=$-lOsinh(l0u) 

for O<x< 1 with 

u(0) = 0 

u(l)= 1. 

We simply replace this problem with the related time-dependent problem 

$=$- 10 sinh(lOu) 

use the boundary conditions, and take an initial value 

u(0, x) = 0 for O<x<l and u(O,l)=O. (4.49) 

(4.46) 

(4.47) 

(4.48) 

Again, we can use central differences to replace the second order spatial derivative 
in (4.48). (See Problem 7.) 

The use of a uniform grid for this problem is soon found to be unwise, because 
the solution has a thin boundary layer near x = 1. Thus, a modest uniform grid mis- 
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ses this feature, and a sufficiently fine one is inefficient outside of the boundary 
layer. Thus, foBlowing Sincovec and Madsen [13O], we pose a ~o~n~iforrn grid of 
51 points, with 14 equal intervals on [0,0.4], 13 on [O.4,0.7], 12 on [O.7,0.9], and 
1% on [0.9, 11. Alternatively, we expect that a good dynamic grid or moving finite 
element algorithm would overcome this difficulty automatically. 

Finally, we again point out that the last four examples are treated as partial dif- 
ferential equations by the numerical method of lines. We have indeed carried out 
the discretizations by hand and have used uniform mesh spacing in all but the last 
case. We do not advocate hand discretizations in general and we do generally 
recommend high quality method of lines codes. We have illustrated the last four 
examples as we did simply to show the requirements imposed on high quality 
software, as well as its use. 

B. Code Usage and Computational Results 

We now turn to some of the pragmatics associated with the problems described 
in Subsection A of this section. 

Problem l--Robertson’s Problem 

The numerical solution of this problem illustrates the nearly logarithmic increase 
in step size and the control of a neutrally stable problem. The step size did increase 
dramatically. In fact, observed values ranged from about 4.5 x 10-l to 1.7 x 106. 
The magnitude of the largest step size may be mildly surprising if we think in terms 
of asymptotic (h -+ 0) numerica results. 

The CPU times on a CRAY 1s for 10 output points was 0.06 s for both 
and for MF= 22. In LSODE, the software package we used-A&F= 21--uses an 
analytic, user supplied, dense Jacobian. On the other hand, A4F= 22 uses an inter- 
nally generated, divided difference version of the dense Jacobian. A 2 in the first 
digit of MF signifies the choice of BDF or stiff option. It not surpising that on 2% 
small, not very complicated problem, the run times an results would be very 
similar. 

The graphical results in Fig. 4.1 show how y2 starts at 0, builds to about 
3.6 x %Oe4 at about t = 2 x 10 -3 s and decays. This phenomenon would be, at best, 
hard to capture by using absolute or relative error control alone. Note that y1 
decays from B on about the same time scale as y3 builds from O to 1. Note that 
steady state is not reached until t is in the millions. We used 100 data points 
each component to generate Fig. 4.1. Note that good quality graphics an 
reasonable choice for scaling the dependent variables help us to understand the 
ChWliStlYy. 

results shown in Fig. 4.1 were obtained by setting the relative error tolerance 
( L) to 10~-6 and the absolute error tolerance (ATOL) to the vector 
1710-6, %Q-“0, 10-6]T. 

As a general rule of thumb, we like to set the relative error tolerance 
bow many digits of accuracy are required. If the answer is r digits, then we set 
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FIG. 4.1. Robertson’s problem. 

RTOL = 1.0 x lo-“+ ‘) or less. (In the Robertson example, fairly small RTOL helps 
to control the stability problem.) 

To set ATOL, we ask what the noise level is for each component of the solution. 
The noise level is the size of the largest number that may be neglected for that com- 
ponent. (In the national budget, lo6 appears to be small enough.) 

The selection of the error tolerances is very important and yet fairly 
straightforward. The penalties for loose tolerances are incorrect solutions and for 
tight tolerances the penalties are high cost. 

For RTOL = 10p3, ATOL = [10w3, 10p7, 10e31T the results are acceptable. The 
Cray 1s CPU time is about 0.015 s for MF= 21 and 22. 

Problem 2-The Field-Noyes Chemical Oscillator 

The graphical results for this problem are shown in Fig. 4.2 on the time interval 0 
to 610.0747. It illustrates several interesting features: 

l disparate time scales 
l a trigger notch, and 
l the periodicity of the solution. 

The time scales are evident, since the graph of y’ looks like 3 sharp upward directed 
spikes, y3 has a sharp rise followed by a decay for about 90 s, and y2 has a gentle 
rise and a decay for the remainder for the period. The sharp downward spike in y2 
has been called the trigger notch. To resolve these features, we used 484 data points 
for each component of the solutions. For these results, we used LSODE with 
RTOL = ATOL = 10e6, and MF= 21. The problem features noted earlier are not 
major obstacles. 

The tolerances of 1O-6 may sound a bit academic. We should recall that LSODE 
does not control global error directly. It controls local error. With only 10 output 
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)O 

FIG. 4.2. The Field-Noyes chemical oscillator-logarithmic y axis 

points, the CPU time was 0.25 s on a CRAY 15’. With tolerances of 10e3, t 
times were lower, but the answers were highly inaccurate. 

Problem ~-TWO Species Diurnal Kinetics 

This problem illustrates several points: 

* Sharp fronts can be accommodated with modern ODE software. 
0 If negative results for the solution are smaller than ATOL and if these 

results do not make the solution unstable, then we should not worry about them. 
* This problem requires the setting of a maximum time step size, H 

this case HMAX = 3.6 x 103 (1 hr). 

In particular, the last point warrants the caveat that neither ODE software 
packages nor their designers are omniscient. Intuition tells us that if the time step is 
too large in this problem, the solver can go past a major event-sunrise or sunset- 
and miss the feature we are after: the sharp buildup or decay of species. 

To solve this problem, we used LSODE with ATQL = IO-“, RTOL = 10m6, and 
Iwp;= 22. The output in the timed run was taken every 6 hr. This run took 0.84 s on 
a CRAY IS. With MF = 21, the CPU time was 0.81 s for these error tolerances. 
With RTQL = foe3 and ATOL= 10h7, CPU time was 0.29 s and 0.31 s for 
M1;= 21 and 22, respectively. However, the results were not of as high a. q~a~~~~. 
With few exceptions, higher quality numerical results take more CPU time t 
“low quality results. We solved this problem with EPISODE, too. That code sb~~~~ 
run well on a problem of this type because the time-step length can be varied at 
each step. We used a relative error control of the following type. The error in yi was 
controlled relative to the quantity max( 1 y’j, FLOOR’). For this particular problem, 
we chose FLOOR = 10e4. Consequently, when lyi( 3 FLOOR’, EPISODE tries to 
keep the magnitude of the local error in y’ less than j y’l B EPS. (Here, EPS is the 
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FIG. 4.3. Two species diurnal kinetics-truncated, logarithmic y axis. 

user specified error tolerance.) When lyil <FLOOR’, EPISODE tries to keep the 
magnitude of the local error in y’ less than EPS * FLOOR’. (See [77].) 

For EPS = 10m6, FLOOR = 10e4, and MF= 21 the EPISODE run time was 
0.55 CPU s and for MF = 22, 0.59 s. For this problem, EPISODE was faster than 
LSODE for all tolerances that we tried. 

The graphical results in Fig. 4.3 were obtained with 401 output points to resolve 
the solution adequately. Note that y2 = [0,] looks like a staircase with a rise at 
midday every day. In Fig. 4.3, y’ = [0] looks like a spike with its amplitude increas- 
ing each day. A logarithmic scale is used for the vertical axis. We cut off the bottom 
of the graph of y1 to illustrate other features, such as the increases in peak values of 
yi and y2. The taxis is scaled in days with each day beginning at dawn, daylight 
lasting a half day, and night lasting the remaining half day. 

Problem 4-A Kidney Model 

The graphical results (with 201 data points for each species) in Figs. 4.4a, b, and 
c. Correspond to the initial values yi = 0.990268335, 0.99, 0.9, respectively. In the 
graphical results, we used the observation that for t beyond 0.1, y’, y3, and y5 were 
virtually equal. So, we did not plot y3 and y5. Furthermore, in Figs. 4.4b and C, we 
show Iy4/. The figures illustrate the sensitivity of the solution to small changes in 
the choices of yi. This is a vivid illustration that two point boundary value 
problems cast as first order ODES can be challenging. However, the solution curves 
are not overly exciting. By actual computation with a non-stiff solver and with a 
stiff solver, we can compare the cost for these options with LSODE. In all three 
cases, the cost for MF = 10 is at least twice as great as the cost for MF= 21 or 22. 
In LSODE, MF= 10 causes LSODE to use Adams method with functional 
iteration. Looking at the graphs probably does little to give insight to stiffness. 
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FIG. 4.4. (a) A kidney model--y,5 = 0.990268835. (b) A kidney model--logarithmic y axis, yi = 0.99. 
(c) A kidney model-logarithmic y axis, yi = 0.9. 

However, the timing results indicate all 3 cases are stiff. We used RTBL = IQ-’ and 
ATBE = 1W6 and 10 output points for the timed runs. The CPU times are given in 

TABLE 4.4 

CPU Time (in s) for Problem 4 

MF 

Y; 10 21 22 

0.990268835 0.03 1 0.012 0.012 
0.99 * 0.020 0.021 
0.9 * 0.a55 0.054 
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Problem 5-A Laser Oscillator Model 

This is a challenging problem. (See Fig. 4.5a for a 901 point plot for each 4 and 
n.) It is initially stiff and then has a damped oscillatory structure with, period of 
about 7000 ns. Perhaps the earlier remarks about omniscience ought to be recalled. 
In any case, intuition suggests that an automatic method switching code such as 
LSODA would do well on a problem such as this. It does not because it chose to 
continue with the BDF method during the highly oscillatory part of the solution. In 
fact, the LSODA performance is comparable to a straight application of LSODE 
with MF= 21. What works most cheaply? Starting with MF=21 (BDF, analytic 
Jacobian) and switching to MI;= 10 (Adams method, functional iteration) is the 
cheapest in CPU time. We made the switch at t = 4.9 x lo5 because that correspon- 
ded to several times the fastest time constant. The catch is that either quite a little 
analysis to observe this is required or some numerical computation must be done. 
Frankly, neither may be realistic when results are needed quickly, staffing is short, 
or budgets are small. It is far more likely that the user would solve the problem 
with a straight application of LSODE. 

A comparison of CPU times for 87 output point is given in Table 4.5 for several 
methods we tried. The results in Table 4.5 give CPU times for the various choices of 
method. RTOL = 10e6, ATOL = [ 10h9, 10-6]T. 

TABLE 4.5 

Run Times for Problem 5 

Code MF 

LSODE 21 
LSODE 21-+ 10 
LSODA (JT= 1) 

CPU (s) 

0.63 
0.47 
0.74 

Turning back to Fig. 4Sa, the amplitudes of the oscillations in 4 (plotted on a 
logarithmic scale) are not represented by only 901 output points. However, the key 
features of oscillation and damping are captured. Figure 4.5b gives somewhat more 
resolution (401 data points on a shorter t interval) and depicts less variation in 
peak values of 4. 

Problem G-Burgers’ Equation 

Reasons for including this example were noted earlier. Another is to illustrate the 
two solution techniques for this mildly stiff problem. Elsewhere we have worked 
with the traveling square pulse version of this problem [19]. We again note that 
the cell Peclet number must be fairly small for the numerical method of lines to 
work well on convective problems. Finally, in applying both the finite element and 
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FIG. 4.5. Laser oscillator models. 

finite difference strategies, we use the banded version of the solver. The run times 
for 50 interior grid points and 4 output times are given in 

TABLE 4.6 

Solver MF Method CPU (s) 

LSODE 
LSODI 

14 Finite differences 0.032 
14 Simplified Galerkin 0.030 

The MF = 14 setting is for implicit Adams formulas with banded, analytic user sup- 
plied Jacobian. We again used LSODE, with RTOL = 0, ATOL = IO- 3. Similar 
run times were obtained for other banded options. 

The graphical results are given in Figs. 4.6a and b. The solutions for t = 0, I, and 
2 are shown in Fig. 4.6. When t = 3, the solution fits the upper-right corner of the 
U-X coordinate system. To the eye, graphical results for the simplified aierkin 
(Fig. 4.6b) and finite difference methods (Fig. 4.6a) were identical. Moreover, results 
with 50 and 100 interior points were identical to the eye. 

Note that we used MF= 14, implicit Adams formula and the analytic, banded 
Jacobian in the modified Newton iteration. Run times for BDF were comparable. 
This is the only test problem in the set for which we believe this to be true. Again, 
we refer to this as a mildly stiff problem, because f~~~tio~a~ iteration would be 
expensive. 

Problem ‘T--Two Species Diffusion-Diurnal Kinetics: One 

This problem features both diffusion and kinetics, Consequently it is reasonable 
to include it in a Froblem set of this type. Moreover, as we mentioned earlier, it is 
similar to some early large scale method of lanes problems. There is also a 

581/70/l-4 
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FIG. 4.6. Burgers’ equation: (a) finite differences, 102 grid points--u vs. x at various t; (b) simplified 
Galerkin procedure, 102 grid points--u vs. x at various t. 

pedagogical reason for including this problem. It is just a one-dimensional mixing 
version of Problem 3. 

There are some other points, too. The analytic Jacobian version is about twice as 
fast as the finite difference version. 

For 10 output times, RTOL = lo-‘, ATOL = 10-l, and 50 interior grid points, 
the run time with LSODE is 0.57 s with MF= 24. Figures 4.7a and b give the 
results for c1 and c*, respectively, at various values of t (hr). 

Problem ~-TWO Species Diffusion-Diurnal Kinetics: Two Dimensional 

The lessons learned from one-dimensional problems can help with two-dimen- 
sional problems. However, there are aspects of the game that are quite different. 
These include storage requirements for realistic resolution, selection of linear 
algebraic methods, and, of course, speed of solution. Pedagogically, it makes sense 
to add another degree of complexity to Problem 7. 

In keeping with these remarks we break out GEARBI, modified for two-dimen- 
sional differencing problems. We give a brief comparison of GEARBI with LSODE. 
Some data are given in 

TABLE 4.8 

Code A4F ATOL RTOL CPU (s) 

LSODE 24 10-l 10-3 10.4 
LSODE 25 IO-’ 10-3 29.6 
GEARBI - 10-l IO-’ 11.6 

Graphical results are given in Figs. 4.8a-m. In these figures, dx = 20/19. For tighter 
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FIG. 4.7. l’wo species diffusion, diurnal kinetics, one-dimensional: (a) iogdrithmic C! axis, / in h. (.’ 
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error tolerances, GEARBI is faster than LSODE. These data are for a 20 x 20 grid 
and 12 output times. 

We actually solved this problem in three different ways. The first way was picked 
for such practical reasons as available software and severe constraints on the 
required turnaround time for the parameter study. The nonlinear implicit nature of 
the problem precluded the direct use of LSODI. The package DASSL was nor 
initially at hand, so we used a combination of Newton’s method and LSODE as 
follows: 
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for various x, I = 24 h. 
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FIG. G-Continued. 

* The spatial position x and pressure P are known values. (Initially, x = 0, 
P= PO and estimates for y, and dP/dx were also made.) Call the integrator, which 
only uses or requires discrete values of P, dP/dx, and yc. 

l In the function subroutine called by LSODE, we treated (4.44) and (4.45) 
as two nonlinear equations in y, and u = ( -dP/dx) “’ These equations were solved . 
using Newton’s method. 

l The value of dP/dx = -u* was passed from the function routine to the 
integrator, which in turn computed P at the next value of x, and so on. (The most 
recent available values of y, and u were used to start Newton’s method.) 

l When output was requested at x=xout, the value of P(xout) was made 
avaiable to the main program by the integrator. So Newton’s method was used to 
find u(xout) (and hence dP/dx) and yJxout). It was useful, but hardly necessary, to 
have dP/dx as an output parameter. 

In the second method of solution, we just used DASSL in the most obvious ways. 
(That is, we used the DASSL examples and preamble for the problem setup and 
coding.) The initial values and slopes were computed as before. Table 4.9 has CPU 
times for the normal flow case. 

TABLE 4.9 

IBM 3033 AP Cray 1s 

Newton/LSODE 0.04 * 
DASSL (divided difference Jacobian) 0.03 0.027 
DASSL (user-supplied Jacobian) 0.04 0.027 
LSODI * 0.024 

The IBM 3033 AP runs were with a Newton method taken from a continuation 
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package. The Cray 1S runs used DZERX, an IMSL nonlinear system 

. rngs for the two machines were made in as nearly COmparable Ways as 
owever, the IBM runs were made in an interactive environments and 

are rather rough. There are some other algorithmic differences, too. 
believe these two computers are generally comparable in speed. Ah runs are for 
Case 1 only. Tt is clear that the computation of the starting values has sig~~~~a~t 
impact 0~ the timing. Finally, the simplest codes to irn~l~rne~t were those using 
DASSL. 

There is a third way to solve this problem. y way of a sketch it involves the 
foohlowin 

a ecognize that the logarithmic term is the same i 
a Eliminate the logarithmic term to get a uadratic equation in 

h; = ( - dP/d.x)? 
e Rearrange the system to get: 

+ n explicit ODE for P. 

f An algebraic equation in P and y,, with care taken to pick t 
root of the quadratic equation. 

0 Solve the resulting system with LSODL 

It turns out that computationally this is faster than the other two me 
Now we can look at some pragmatics. It is far simpler to use DA 

‘s staffing costs, it is surely less expensive to apply 
erhaps. The real life setting for the solution of t roblem left little 

r experimentation and importing of codes. The p 
clever ways to solve problems. Occasionally, pragmatics pm&de their discovery or 

With some of today’s software, the risk is kept low. 
SSL CPU time was 0.075 s with RTOL = ATOL = 10M6, 

was 0.069 s. Both include the cost of finding initial guesses, 
IN to find starting values. We can also get a feeling 
1s and an IBM 3033 AP. 

The graphical results for Case 1 (normal flow) are given in Fig. 4.9a, while t 
for choked flow are given in Fig. 4.9b. The normal flow lution is fairly linear. 
dramatic change in the pressure gradient in the choked case is perhaps not sur- 
prising. e used 101 and 69 data points to generate Figs. 4.9a and b, res~e~t~~e~~. 

One cure that this problem has that is in no other pr 
we expected an abnormal termination of some kind for 

). In the original runs, we did not know when to expect c 
for non-positive arguments of the logarithm or error 

or. According to the method used, we observed both types 

Prab2em l&Troesch’s Two Point Boundary Value Problem 

The graphical results for this problem are given in Figs. 4.10a and b. The runs 
were made ES0 E and the banded Jacobian options for both t 
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FIG. 4.9. Two-phase plug flow problem: (a) Normal flow; (b) choking. 

(MF= 24) and divided difference (MF= 25) Jacobians. The error tolerances were 
set with RTOL =0 and ATOL = 10-3. For 50 interior grid points, the run times 
were 0.06 and 0.07 s for MF= 24 and 2.5, respectively. 

The graphs show how the initial guess relaxes. The graphical solutions for t = 0.1 
and t = 1 overlapped. We used 51 and 24 points to generate each curve in 
Figs. 4.10a and b, respectively. 

5. RELATED DEVELOPMENTS 

There are many ongoing or recent projects of potential interest here. For exam- 
ple, the active work on Krylov subspace methods could mean that the BDF solvers 
would need but minimal storage for certain types of PDEs. At this time it is not 

FIG. 4.10. Troesch’s two-point boundary value problem. 
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quite clear to which classes of PDEs this work will be applicable [IL 301. other 
storage reduction methods for MOL solution of PDEs have also been investigated. 
These include several adaptations of Newton’s method- -Newton/successive over 
relaxation (SOR), SOR/Newton, using only diagonal blocks of the Jacobian and so 
on. Again, the extent of the applicability of these methods is not well underst::od 
[23]. In the broadest sense, the moving finite element methods and dynamic grid 
methods could also be regarded as storage reduction methods. So far, most iest 
results are available for only one or two PDEs in one spatial dimension. The worth 
of these techniques will be fully realized for reasonably sized systems of PDEs in 
one and two spatial dimensions or problems in three spatial dimensions. 

It seems likely to us that these methods will be effective on reactive, diffusive, 
convective flows. If this is to be, the cell Pcclet numbers will be kept low by the 
adaptive technique. 

We have alluded to automatic method switching elsewhere in this paper. The 
idea is for the code to pick a stiff or a non-stiff ODE method automatically and 
dynamically. In this way, the more efficient method is automatically applied to each 
phase of a problem. So far, efforts along these lines have been few. They have. 
however, met with some success [ 110, 121, 1241. The extent of the consequences of 
such a code is not clear. However, there is clear potential market for an automatic 
method switching code. because the user does not need to choose a method. 

The trend toward scientific engineering workstations will impact ODE solvers. 
We can cxpcct to set an even stronger trend toward non-Fortran front ends and 
graphical output in this setting. It is likely that the smaller problems will be run on 
the workstation and the larger ones uploaded to a large scale computer or super- 
computer. In this supercomputer setting, the workstation would serve as a pm- and 
post processor. 

The idea of having a good. inexpensive global error estimate has drawn a fa.ir 
amount of attention. In most cases, this amounts to a clever interpretation or 
solution of a fairly simple differential equation (variational equation), lt appears 
that most of these estimates are based on an asymptotic analysis (jr -+ 0) and are 
currently fairly crude. Also, there is not much numerical evidence to show that the 
global techniques are superior to the current local estimates. However, globa!. 
estimates may prove to be practical as they stand or as they cvolvc in the furture. 
Some work in this area for stiff ODES includes: Stetter [ 1331, Dew and West [42], 
Robinson and Prothero [ 1143, Prothero [ 1123, Dahlquist [36, 373, and Shampine 
[ 1221. The value in computing global error is this. Global error is what the user 
really wants to control. One issue is whether the global error estimate wi]j bc simply 
supplied to the user or whether the estimate will be used to control order and step 
size selection. Another is the need to carry a differential equation or its reduced cost 
solution for each ODE in the system. Finally, there is some disagreement regarding 
the required quality of this estimate. 

One drawback of using a variable step BDF lies in the retention of the matrix 

P = [I - &f, ] 
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in the corrector phase of the code (see 2.12)). The parameter & changes with h. 
Consequently, the matrix P gets out of date, then needs to be re-evaluated and fac- 
tored. The basic idea is this. If the coefficient j3, can be held fixed, then the matrix P 
does not need to be recomputed and factored as often as when Do varies freely. The 
cost of recomputing and factoring can be high. The scheme becomes a little more 
apparent if the system (2.11) is multiplied by b = l/p0 so that bT and hf, can, in 
some sense, be treated separately. By using interpolation, b can remain fixed when h 
changes. The consequence is that a fixed leading coefficient method can be more 
stable than a fixed step-interpolate strategy (GEAR, LSODE) and less expensive, 
and a little less stable than a variable step method (EPISODE). Indeed, Petzold 
used the fixed leading coefficient approach in DASSL [109]. The pioneering work 
in this area was done by Jackson and Sacks-Davis [SS]. The idea is promising 
since it works well in DASSL and performed well in the Jackson and Sacks-Davis 
prototypical revision of EPISODE. 

6. SUMMARY 

We have discussed the notion of stiffness, where it arises, and how to 
pragmatically test for it in Section 1. There, we also looked at an example of a 
neutrally (conditionally) stable system of ODES, looked at eigenvalues of both 
ODES and spatially discretized PDEs, particularly the heat equation. We then tur- 
ned to the various structures of systems of ODES and talked about the origins of 
the structures. With this discussion, we associated the importance of the structure of 
systems of ODES and how we might take advantage of Ihem. Finally, we discussed 
some of the features of the solutions of systems of ODES and how high quality 
software must handle them. 

In Section 2, we presented some of the underlying methods for solving stiff 
ODES. These included BDF, Runge-Kutta, and other methods. In the category of 
other methods were: averaging, extrapolation, one-leg, multiderivative, partitioning, 
composite, block, fitting, collocation, and blended methods. Along the way, we also 
discussed error and step size control. 

In Section 3, we gave a brief historical perspective of the development of some 
stiff ODE software. Then, we turned to a discussion of the readily available stiff 
ODE solvers. (Much of the highest quality software is available at low or no cost. 
See the Appendix for sources of software.) 

Section 4 is where we gave a number of examples. One word of caution. These 
examples are not very large or time consuming, in general. For example, see 
[ 31, 231 for problems that are larger in scale. We mention this because problem 
size can and does bias test results dramatically. Nonetheless, we believe these exam- 
ples are fairly representative with respect to many features. We did not, however, 
give examples using zeros of functions (g-stops) or problems involving extensive 
constraints. These types of problems do occur and with some frequency [138]. 
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We believe that this review will be helpful to line scientists and engineers face 
with the need to solve a large number of problems quickly and efficiently. Con- 
sequently, it could be (and has been) used in the classroom or as a basis for a 
workshop. We also believe that this review indicates some of the more ~rorn~si~~ 
areas of research and development for the solution of stiff ODES. 

Finally, managers of scientific computing units can use this pa er ~CX an overview 
of the field. 

APPENDIX: How TO OBTAIN STIFF ODE CODES 

Here we have focused on ODE software that is readily avaiable. We simply hst 
known sources for such software. The ODE solvers in the rational Energy 
Software Center (NESC) are known by name and number. (Source: National 
Energy Software Center, Argonne National Laboratory, 9700 South Cass Avenue, 
Argonne, I& 40439.) 

Code Catalog number 

DASSL 9918 
EPISODE 675 
EPISODEB 105 
EPISODEIB Not issued at this time 
FORSIM 514 
GEARBI Not issued at this time 
ESQDE 592 
LSODI 9939 
LSODA 9937 
LSODAR 9936 
ESODES 9938 
LSOIBT 9832 
SLATEC Library (DEBDF) 820 
STFODE/COLODE 652 
TORANAGA Not issued at this time 

We strongly recommend the following. ff you want to obtain a code from NESC, 
contact your m-house NESC representative. If you do not have an NESC represen- 
tative, telephone the NESC to determine prices, procedures, and timing. Note that 
the SLATEC library can be obtained directly from MESC. 

The IMSL library is often available on the in-house mainframe computer. 
recomme hat you contact your in-house user representative, if you are intere 
in using $6, software. For further information about this library, write or 
telephone IMSL, Sixth Floor, NBC Building, 7500 Bellaire ouston, 

85. 
Hibrary may be on your in-house mainframe. Elements may also be 
ou for use on a personal computer. Again, see your in- 
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port staff. You may obtain further information about the NAG library from NAG 
Inc., 1131 Warren Avenue, Downers Grove, IL. 60515 or NAG Central Office, 
Maylield House, 256 Banbury Road, Oxford OX2 7DZ, United Kingdom. 

It is possible that some experimental codes are available from their authors for 
trial use and beta testing. Some of the papers cited include statements of 
availability. 
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