
JOL’RfiAL OF COM?CT.4TIONhl, PHYSICS 70, I-62 (1987)

Review ArticDe

tiff ODE Solvers: A Review of
Corning Attractions*

GEORGE D. BYRNE

Computing and Telecommunications Systems Dinision.
E,XXOB Research and Engineering Company,

Clinton Township, Annandale, New Jersey 08801

AND

ALAN C. IIINDMARSH

Computing and Mathematics Research DiGion L-316.
Lawrence Liuermore National Laborator;?, Lioermore, Califvrnia 94550

Received March 14. 1956

‘I-MIS WORK IS DEDICATED TO THE MEMORY OF DENNIS WILLIAM BYRNE,
MAY 2, I~~~-APRIL 16, 1985

Stiff ordinary differential equations (ODES) ran now be solved more or less routinely. This
review is intended for the user who is interested in learning how to solve these systems of
equations. Consequently, this review explains what stiff ODES are and where they arise. it
tells what is expected of the software and sketches how it works. SQ, several tried and true, as
well as experimental, numerical methods are outlined. Perhaps the most salient feature is a set
of examples that has been compiled during the last 15 years. These examples include several
prototypical problems. The problems are deliberately tractable in sjze. yet display features of
much larger problems in science and engineering. In each case. the choice of the software
package, the ODE solver, is given. These choices are based on the author’s cornbiDed
experience and take into account problem structure. This then is a brief handbook which
could be used to learn or to teach the pragmatics of numerically solving stiff ODES. This work
should be useful to line scientists, scientific computing managers, and to students. ‘C.‘ !987

Academic Presr, Inc.

Contents. 1. Introduction. A. ODES in normal form and an example. B. The noticn of
stiffness. C. The connection between stiffness and stability. D. Stiffness and the method of
lines. E. Linearly implicit ODES, differential-algebraic systems, and the method of !ines.
F. Problem structure. G. Active time scales. 2. Surtley of methods. A. tinear multistep
methods. B. Runge-Kutta methods. C. Other methods. D. Pros and cons. 3. .$@~;ar~.
A. A brief historical background. B. LSODE and its variants. C. EPISODE and its variants.
D. Other descendants of GEAR and EPISODE. E. Differential-algebraic system solvers.
F. Runge-Kutta codes. G. Blended and composite multistep codes. H. Extrapolation codes.
1. Second-derivative codes. 4. Example problems and code usage. A. The example problems.
B. Code usage and computational results. 5. Related developments. 6. Summary. Appendix.
References.

* Prepared by invitation for Journal of Computational Physics.

0021-9991/#7 43.00
Copyright 0 1987 by Academic Press, Inc.

All rights of reproduction m any Form reserved

2 BYRNE AND HINDMARSH

1. INTRODUCTION

Software for stiff systems of ordinary differential equations (ODES) has enjoyed a
wide range of acceptance during the past decade. As a consequence, its impact has
been substantial in the physical sciences and in engineering.

The intent of this article is to give a review of modern methods and software
solvers that are currently in use for stiff ODE systems. We also give examples show-
ing both the challenges to the software and the capabilities of the solvers.

In the remainder of this section, we discuss ODE forms, stiffness, problem struc-
tures, and other features arising in stiff systems of interest. In Section 2, we survey
the basic methods that are used, with some comments on their relative merits. Sec-
tion 3 is a description of available software for stiff systems, as far as we are aware
of it. In Section 4, we give 10 example problems in detail, followed by description of
their solutions using available solvers. Section 5 mentions some related develop-
ments, and Section 6 summarizes the paper. We expect the reader to choose those
parts of the paper that are of greatest interest.

A. ODES in Normal Form and an Example

We begin with the canonical first order initial value problem and discuss
problems in other forms later. We represent the first type as

Y = f(t, Y), t, < t 6 tfinsl (1.1)

Y(fo> = Yo, 11.2)

where

N is the number of scalar first order ODES
t is the time-like independent variable
y= [v’, y’,..., yNIT is the column N-vector of dependent

variables, and the superscript T denotes vector transpose
‘= d/dt denotes differentiation with respect to t

f is an N-vector valued function of y and t

to is the initial value or starting value and is given
tfina, is the final value of the interval of integration

Yo is the initial value N-vector.

In terms of the components of (1.1) and (1.2), we have

ji = f’(t, y’) y2)...) yN)

y’(to) = Y6

for i = 1, 2 ,..,, N.

STIFF ODE SOLVERS 3

As an example of a system of stiff ODES, we borrow a model of a chemical reae-
tion which has been described in several places [113,18,77,50] and can be
described as a reaction of the type

A, - A,, 0.04

A*fA,- A,+A3, IO4

2A, - 2A,, 1.5 x IQ7

j’ = - 0.04y’ + 104y*y3

32 = 0.04y” - 10 4y*y3 - 3 x wy*y*

j3 = 3 x 1o’y*y*

y’(Q) = 1

y*(o) = 0 (1.4)

.$(O) = 0.

This reaction is interesting because the reaction rate coefficients (the constants on
the right-hand side of (1.3)) vary over nine orders of magnitude. IMoreover, it can
be shown that as t--f cc, y1 +O, y2 +O, and y3 + 1. Also, by Looking at the system
or by an appropriate computation [78] we can see that the dominant equation at
equilibrium is I;’ = - 104y2. Note that for any choice of initial value, the solution of
this equation is a strongly damped exponential which is typical of stiff systems.

B. The Notion of Stiffness

We can now turn to the concept of stiffness. We will first give a rough notion and
then (on the next subsection) a more precise one.

A prototypical stiff differential equation can be given by

j= -103[y-exp(-t)]-[exp(-t)] O<ltlt,,,,

Y(O) = 0,

(1.5)

(1.6)

where y is a scalar. The exact solution of this problem is

y(t) = exp(- t) - exp(- 103t)

and is seen to be comprised of two components, one of which (exp(- 103r)) varies
much more rapidly in t than the other (exp(- t)). For this problem, the notion of
stiffness can be formalized somewhat if the time constants z1 = 18 p-3 and z2 = H are
introduced. Note that at l= zl, the fast component is exp(- 103z,) = exp(- I) and
the slow component at t = z2 is exp(-TV) = exp(- 1). These time constants corre-

4 BYRNE AND HlNDMARSH

spend to values of t for which their respective components have the value exp(- 1).
Stiffness in this problem is caused by the presence of a small decay time constant zl,

For t smaller than several times as large as zl, the fast component makes
significant contributions to the value of the solution. This range of values of t is
often called the transient interval, If the range of integration is restricted to the
transient interval, we would not need to resort to any special numerical methods of
integration, and the problem would not be considered stiff. However, beyond the
transient interval, the value of the solution is essentially the value of the slow com-
ponent. Yet the presence of the fast component (even though fully decayed) forces
the use of either a very small step size (comparable to z,), if a tradiational explicit
method is used to solve (1.5), (1.6), or else a stiff solver. Beyond the transient, the
problem is stiff.

Thus the stiffness is determined by the range of integration, i.e., by tfina,. The
value of z2 would dictate that t fina, z 1 for a complete picture of the solution, but a
smaller value might be posed instead. In any case, a quantitive measure of the
stiffness of this prototype problem is

If S is on the order of 1000 or larger, we would certainly regard the problem as stiff.
If S is less than 10, the problem would be non-stiff. The intermediate values of S
would correspond to problems whose descriptions would range from non-stiff,
through mildly stiff, to stiff. The numerical values are valid, but the transition from
non-stiff to stiff is not sharply defined.

The same kind of observation can be made of the kinetics problem (1.3), (1.4),
but the stiffness is somewhat less transparent. Recall that near the equilibrium
values, the second equation reduces approximately to the simple
ODE j2 = - 104y2, which has an exponential decay time constant of T = 10 -‘, On
the other hand, a complete picture of the approach to equilibrium turns out to
require integrating to about t = 107. Thus we again have a rapid decay time con-
stant that is much shorter (or smaller) than the time range tfinal, and it is clear that
we are looking at a stiff system of ODES. In both cases, the essential features of a
stiff system have been captured: disparate time constants, an interval of integration
several times longer than the shortest time constants, and an approach to the
steady state that does not involve rapid oscillations.

There have been several definitions and descriptions of stiff systems of ordinary
differential equations given, e.g., [I 126, 22, 111, 341. Perhaps the most pragmatic
way to determine the stiffness of a system of ODES is simply to solve it with a non-
stiff differential equations package such as ODE [1271, DVERK [Sl], or DERKF
[12S] to name but a few. Then, record the cost of solving the problem. By the way,
it would be prudent to impose a limit on CPU time or the number of function
evaluations. Similarly, solve the problem with a stiff ODE package such as LSODE
[74], DGEAR [SS], or EPISODE [79] or an appropriate relative. Upper bounds
on the cost should again be imposed. Now compare the costs of the two solutions

STIFF ODE SOLVERS 5

over the same time interval. If the stiff ODE solver was substantially less expensive
to use than the non-stiff solver, then the problem was stiff. If the non-stiff solver was
the less expensive, then the problem is non-stiff. Between these extremes are m
stiff problems and, perhaps, other categories. We have not addressed here the
sf appropriateness for non-stiff solvers on parts of the interva
stiff solvers on other subintervals. However, this issue is now
packages that switch methodologies through a stiffness detecto

To illustrate this empirical determination procedure, cons
(1.5), (2.6) by DERKF (a nonstiff/ODE solver) and by L
method option), We pose the same error tolerances
tolerance= IO-‘) for both, and ask for output a$ r=CI.QQI, 8.01, 0.1, I, being
careful to constrain the number of internai time steps to 500. The results are as
follows: DERKF completed the problem at a cost of 1876 evaluations ofJ while
ESODE completed it with 136 (including those for evaluating afl@). The run times
were in a ratio of about 2.4 to 1. Both solutions had five digits of accuracy at all

ut the higher cost of the solution from the non-stiff solver clearly
indicates that the problem is stiff. For other problems, the cost (run time) ratios
may be significantly larger. Shampine [125] gives further empirical measmes,

C. The Connection between St$%ess and Stabikity

The notions of stiffness and stability are related. Let us briefly review how [22,
1263. Suppose we have two distinct solutions of (1.1), say y and

jr-h=f(t,y)-f(t,

If we neglect higher order terms, then

y - bb N f,(t, w)(y -

If we assume that y-w is sufficiently small, in an approximate sense: then

jr-ti=J(y-w),

where J= f, is the Jacobian matrix given by

the element of J in row i, column j. assume that is locally a con-
is a stable matrix (all eigenvalues o have negative real parts) then

as t + cc. If we reevaluate J as t increases, and require that each J be
locally constant and a stable matrix, then it follows that y and w tend to the sanie
finite function as I -+ co. That is, (1.1) is stable By stable, we mean that given any
two particular solutions y and w of (l.l), they ten to the Same finite function as

6 BYRNE AND HINDMARSH

t --+ a. (Other kinds of stability are also important, but this is the one needed here.)
The connection between stiff ODES and stable ODES is this: Stiff ODES are
extremely stable, in that there is at least one eigenvalue with a large negative real
part. In fact, they can be called super-stable [126).

A more rigorous definition of stiffness was also given by Shampine and Gear
L-1261:

By a stiff problem we mean one for which no solution component is unstable (no eigenvalue
[Of the Jacobian matrix] has a real part which is at all large and positive) and at least some
component is very stable (at least one eigenvalue has a real part which is large and negative).
Further, we will not call a problem stiff unless its solution is slowly varying with respect to the
most negative part of the eigenvalues.... Consequently a problem may be stiff for some inter-
vals and not for others.

By this definition, non-negative real parts in the spectrum of the Jacobian matrix
are acceptable, as long as they reflect neutral or slowly growing modes in the
mathematical model. Further, these modes must also stay within reasonable bounds
over the time interval, t, < t d tfina,, of interest, and must be slowly varying com-
pared to the most strongly damped mode.

To illustrate this point, the scalar example (1.5) has one eigenvalue,
aj/+ = - 103. By (1.7), the solution beyond the transient is essentially exp(- t). It
is indeed slowly varying with respect to exp(- 103t). By contrast, if we replace the
forcing function exp(-t) by (e.g.) sin(lOOr), the solution no longer varies slowly
relative to the strongly damped mode, and the problem is not stiff.

The latter point relates closely to a common misunderstanding of stiffness.
Problems which have undamped high frequency oscillations in the solution,
whether attributable to forcing functions or to eigenvalues with large imaginary
parts, are called stiff by some authors. We (and most authors) do not call such
problems stiff. One reason is that highly oscillatory problems require numerical
approaches that differ radically from those for stiff problems.

The above definition leads to a quantitative definition of a stiffness ratio,
matching that used in the simple example earlier. We simply need to identify the
eigenvalue I with the largest negative real part, define the smallest time constant to
be z = - l/Re(A), and define the stiffness ratio to be

s = (4inal- kJ/~. (1.8)

Unfortunately, this is also not a precise definition, because in general z varies along
the solution. We can only use (1.8) in a local sense, applying it to subintervals
where z is essentially a constant.

Now, let us return to the kinetics model (1.3), (1.4). Some computations show
that one associated eigenvalue is always 0. (The simplest way to see this is to note
that 3’ + 9’ + j3 = 0, which in turn tells us that mass is conserved.) Moreover, at
equilibrium (as t -+ co), the eigenvalues are 0, 0, and - 104-0.04. Thus the
problem is certainly stiff if fana, is of order 1 or larger. By extending the notion of
stability we examined earlier to include neutral stability (eigenvalues equal to zero),

STIFF ODE SOLVERS 7

we can also show the problem is (neutrally) stable. If, however, we numeri
turb the asymptotically zero eigenvalue to a positive value, then the pro
become numerically unstable. This instability can arise through numerical
or insufficiently stringent error control. This feature makes this problem
computationally challenging if we want to solve it for large t [77, 331.

D. Stiffness and the Method of Lines

So far, we have seen that stiff systems of differential equations arise directly from
a model. However, they can also arise in another way-the spatial discretization of
parabolic partial differential equations. As an illustrative example, we take the one-
dimensional heat equation,

u, = L&, 0 d x f 1, 0 < t < tfina,

w, t, 40, th fdo, t)) = 0, al, f, 41, t), %(L t)) = 0 (1.9)

44 0) = 4(x).

Here subscripts denote differentiation, u is the dependent variable, t is time, D is the
diffusion coefficient, and x denotes spatial position. Moreover, L(0, t, ~(0, t),
~~(0, t)) = 0 is the left boundary condition, while R(1, t, ~(1, t), ~~(1, t)) = 0 is the
right boundary condition.

We can reduce (1.9) to a system of ODES by a number of spatial discretiaation
techniques, such as Galerkin’s procedure in conjunction with B-splines, co~~ocati~r,
in conjunction with B-splines, or other finite element techniques. Here, we simply
replace the spatial derivative with a three point, second-order difference scheme and
use the N + 2 uniformly spaced grid points,

xi = i/(N + 1), i=o, l,..., NI- 1.

Also, for simplicity, let us take the boundary conditions to be of homogeneous
Dirichlet type: u = 0 at x = 0 and x = 1. The system of ODES is then

jr=Jy (1.10)

Y(O) = @D, (!“%I)

where

y= CY’, YL YNIT

and

y’-N U(X/, t)

J = [D/(~x)~] tridiag[l, -2, l] (the N x N tridiagonal matrix)

Ax= l/(N+ 1)

8 BYRNE AND HINDMARSH

The eigenvalues of J are given by [141],

-20
2,=(dx)z k = 1, 2,..., N.

For N large, the largest eigenvalue (in magnitude) can be approximated by

A1 z - 4N’D

while the eigenvalue with smallest modulus can be estimated by AN z - n2D.

The negative reciprocals of these eigenvalues correspond to the time constants for
the system of ODES. Again, if renal denotes the length of the interval of integration,
then the stiffness ratio for the system of ODES is, by (1.8),

S = 4tfi,a, DN2.

So, for example, if tsna, D = 1 and N = 100, this problem would be stiff.

E. Linearly Implicit ODES, Differential-Algebraic
Systems, and the Method of Lines

If we use Galerkin or collocation for (1.8) in conjunction with B-splines, then the
system of ODES has the general form [134, 96, 971,

Aji=Jy (1.12)

y(0) = @. (1.13)

of the coefficients of the expansion of the Now, the vector y is comprised
approximate solution

44 t I= f Yitt) Bi(x)
i= 1

in terms of the B-spline basis functions Bi. The initial values for the coefficients are
determined by a projection of the initial profile into the approximate solution space.

In the case that L and R in (1.9) prescribe essential boundary conditions, e.g.,
~(0, t) and ~(1, t) are prescribed, A may be a singular matrix, with zero rows
corresponding to equations that prescribe ~(0, t) and ~(1, t). Consequently (1.12)
may be a differential-algebraic system, which is comprised of both implicit ordinary
differential equations and algebraic equations. If L and R in (1.9) describe natural
boundary conditions, e.g., (&/8x)(0, t) and (&/8x)(1, t) are prescribed, then (1.12)
is a system of implicit ordinary differential equations and A is nonsingular. This is
because the variational representation (the weak form representation) imposes no
constraints on the approximate solution.

STIFF ODE SOLVERS 9

This example indicates the flexibility required in the underlying software
tial differential packages such as POST [118], DISPL2 [94,97], and P
jlO21. These and several other packages automatically implement sp
cretizations to the user’s specification. This technique is called the
method of lines [101-j. We also point out that uniform grids are not re
hand discretizations or by the good method of lines codes Indeed, some
tal codes dynamically adjust and/or insert grid points to model fronts
phenomena. This dynamic adjustment may revise the form of (1.12).

Differential-algebraic systems arise in many other ways also. A few are descri
in Sincovec er al. [131].

F. Problem Structure

One key to effectively using stiff ODE solvers is the use of the a C?priate
package to take advantage of the structure of a problem-the COU@ of the
dependent variables. To give some idea of the significance of problem Structure We

have seen run times reduced by factors of 20 to 200. How? The user ap tely
ordered the dependent variables and chose the software package to the
resulting structure. We now address several structures in turn.

One type of problem we have talked about is the dense syslem of equations in MOY-
ma1 form. That is, each ODE is coupled to most of the dependent variables and the
system is in the form (Ll), (1.2). An example of such a system is (1.3), (1.4)~ Larger
dense systems are quite common.

We have also seen a simple PDE (1.9) which led to a differential equation in nor-
mal form but with a tridiagonal Jacobian. In the case of a single ~~~~i~e~r
parabolic E, the Jacobian would generally be banded. (The bandw
depend o discretization.) That is, J,= 0 for i-j> ML and j- i >
ML and MU represent the lower and upper half bandwidths of
the case of (1.10) M, = M, = 1. The idea is fairly straig~tforwa
store the elements within the bands formed by the ML subdi
diagonal, and the MU superdiagonals of J. We can also apply this idea to systems
of PDEs in one spatial dimension. Such systems can also be treated with co&s
using block structured Jacobians.

anded Jacobians also arise in systems of 8
only a small, fixed number of near neighbors ar
good ~xarn~~~ of this is a series of stirred tank G

Linearly haplicit ODES in the form (1.12), (1.13). ~e~er~~~zed to ~~~~~~ea~ depera-
dence on y, take the form

Ajr = g(t, Y 1, to 6 2 =s tIina1

Y(fo) = 90. (L45)

In this form, A is an Nx N coefficient matrix and g is an N-vector valued ~~~~t~~~,
ere = A(f, y) is allowed. Systems of this type do arise from finite e%ement

10 BYRNE AND HINDMARSH

methods. However, they also arise from the finite difference treatment of linearly

implicit PDEs, which occur in oil reservoir models [61, 44, 106 3. In the case of
PDEs in one spatial dimension, A and g, are usually banded.

Block structured Jacobiuns arise in ODES in normal form (l.l), (1.2) in the
solution of systems of PDEs in two or more spatial dimensions. By block struc-
tured, we mean that J can be partitioned into submatrices or blocks of size IZ x 12.
Most of the blocks are non-zero. However, the non-zero elements occupy a few
blocks, usually in a discernable structure, but not necessarily tightly packed
together. In two-dimensional PDEs, there usually is a block-banded structure
(blocks of nonzero elements are usually banded about the main diagonal), a few
outlying block diagonals and, perhaps, a few block columns or rows have nonzero
elements. Such systems can also arise in networks of various types.

We note that block structured linearly implicit ODES (1.14), (1.15) also arise in
solving one dimensional PDEs by finite element methods.

Normal form ODES with sparse Jacobiuns occur in PDEs on irregular geometries,
certain loosely coupled networks, and some chemical kinetics models involving a
large number of species or compositions. In general, a sparse matrix is a matrix
with a very small percentage of nonzero elements. A general sparse description of
the Jacobian is appropriate when the nonzero elements form no readily discernable
pattern of the types discussed previously. Alternatively, it may be appropriate when
the pattern is such that there is no neat way to take advantage of the structure, e.g.,
no handy software package.

G. Active Time Scales

Modern software packages for ODES are capable of handling a broad spectrum
of problems and problem features. So, let us see what some of these features are.

Contrary to the perceptions of some writers, stiff problems do not always have
single transient region. There may be several regions in which transient phenomena
occur, That is, there may be recurring transient regions where the problem is non-
stiff followed by regions where the problem is stiff. We were introduced to problems
of this type through the solution of chemical kinetics models of certain minor
species in the upper atmosphere 1159, 43, 20, 181. The model is called the Chapman
mechanism. Its features include very rapid changes in the concentrations of minor
chemical species. These changes correspond to the rising and the setting of the sun,
since the reactions are simply related to photodissociation. To our knowledge,
Gelinas and Dickinson were the first to solve this problem without restarts or
averaging in 1973, using a prototype of EPISODE [59].

Another model which is in some sense of a similar nature to the Chapman model
is the Field-Noyes model of a chemical oscillator (Field and Noyes [52)). A
chemical oscillator is a chemical reaction which takes place in such a way that the
concentrations of the chemical species in the system vary periodically in time. In the
case of the Field-Noyes oscillator, the concentrations of the three species vary in

STIFF ODE SOLVERS 11

such a way that the three time scales of the reactions are very evident and disparate
over each period of the reaction.

Other forms of periodic transients do occur in ODEs. Consequently, solvers must
accommodate these phenomena. They must also handle traveling waves. Let us see
how traveling waves arise and why they must be handled.

In various applications of engineering and science we find time dependent PLIES
involving convection, diffusion, and reactions. In this work, we shall assume that
the cell Peclet numbers are small, say 10 or less. However, we have used MOL
packages and techniques to solve non-diffusive systems. For many of these PDEs.
the solutions have fronts in the variables which correspond to temperature. concen-
!rations, saturations, density. or some other physical entity. We are quite often
interested in the variation in time and/or space of a wave front. This could corre-
spond to a reaction front, flame front, or leading edge of a phase. Although these
spatial discretization and front tracking issues are important, they are not within
the scope of this paper. The challenge, in general, is to develop an economical,
reliable, universal strategy for tracking fronts. The challenge for ODE software. in
particular, is to accommodate this strategy.

In the next section, we will discuss the numerical methods which are designed to
handle these phenomena and features.

2. SURVEY OF MF.THODS

Software for ODE initial value problems has progressed to a point where, in
most casts, the user needs to know little or nothing about the methods on which the
software is based to get reliable answers economically. The user simply follows a set
of usage instructions. perhaps experimenting a little with input parameters, until
satisfactory results are obtained. However, these instructions and the requirements
imposed on the user vary greatly among solvers. The reasons for this relate largely
to properties of the underlying methods. Consequently, it is helpful for users to
have some famiiiarity with the methods in the software packages. Moreover, ODE
problems with special features often cannot be lit into the available software
without modifications to the latter, and this situation certainly requires a
knowledge of methods. Finally, we recognize that the last word on ODE methods
has not been said, and a familiarity with current methods is valuable in assessing
new methods that appear in the literature from time to time. Some of the methods
we mention, which are not yet available in production software form, may someday
appear in highly effective software.

Other surveys of ODE methods have appeared occasionally. Two recent ones are
Seward, Fairweather, and Johnston [1201 and Gupta, Sacks-Davis, and Tischcr
[h3J

For thcsc reasons, we give here a brief survey of the numerical ODE methods
that are currently used in the more popular and successful ODE (initial value)

12 BYRNE AND HINDMARSH

solvers, both stiff and non-stiff. We will write the problem in the simple general
form

9 = f(t, Y), Y(to) = Yo (2.1)

where y is a vector of length N, to, and y. are given, and f is an arbitrary vector-
valued function. Modifications for the linearly implicit form

Ajr = g(t, Y), Y(fo) = Yo (2.2)

will also be described.

A. Linear Multistep Methods

The class of linear multistep methods is large and varied. We begin with it
because it contains some of the most useful methods for stiff problems and also for
non-stiff problems. This fact is reflected in both the available software and the
frequency if its use.

These and the other methods discussed here are discrete, in the sense that what is
produced is basically a sequence yo, yr,..., yn,..., of values of y which approximate
the solution y(t) at discrete t values to, t, ,..., t, ,.... In the linear multistep case, these
discrete values of y are defined by a formula of the form

yn= ? a,y,jth 2 piyn-j. (2.3)
i=l i=O

Here yj denotes f(tj, y,), h is a constant step size in t, i.e., h = t, - t,_ , . The coef-
ficients ai and pi and the nonnegative integer constants K, and Kz are fixed for a
given method. The number K= max(K,, K2) is the step number, i.e., the number of
past values involved, and (2.3) is referred to as a K-step method. Note that the yi
and yj occur linearly in (2.3); hence, the name. These formulas can also be written
in a form which accounts for varying step sizes hj = tj - tj- 1. ln that case, they are
written as

Yn= 2 UniYn-i+hn 2 PniPpr-i, (2.4)
i=l i=O

where the a and p coefficients now depend on h,, h, _ 1 ,..., h, - K+ 1.
The simplest examples of linear multistep methods are the Euler (forward Euler)

method,

yn=yn-i+hjTn-1
and the backward Euler method,

yn=yn-l+hjl,.

STIFF ODE SOLVERS 13

These are one-step methods (K = I), but are nevertheless included in the linear
tistep class, as degenerate cases, for convenience.

The class of methods now most heavily use for stiff problems is that of
ackward Differentiation Formulas (BDFs) Th are chara~te~zed by puttin

M, = 0 and K, = 4 in (2.3) or (2.4) above. Thus, the fixed-step BDF of order Q is

and the variable step BDF of order 4 is

with ct,, and /Ino depending on h,/h,- 1)..., h,/h,-q+ 1. The case q = 1 iis the
backward Euler method. The name BDF comes from writing (2.5) and (2.6) in a
form that gives jl, as a combinations of the yn _ i (approximately).

Among the most popular non-stiff methods are the Adams methods, which are
characterized by having only one term, y, _ 1, in the first sum in (2.3) or (2.4). Thus,
the explicit Adams method of order q is given by either

y--l
Yn=Yn-l+h C Bipn-c

i=l
(2.7)

or the variable-step analog of this formula, and the implicit Adams method of order
q is given by either

q--l
Yn=Y+l +h c PiLn--i (2.8)

i=O

or its variable-step analog. The familiar Trapezoid Rule,

Yn=Yn-1 + (hP)(jin + 3*- 11, (2.9)

is the case 4 = 2 in (2.8). (Some refer to (2.9) as the Crank-Nicolson formula in the
context of partial differential equations.)

The term order is well-defined for linear multistep methods. For (2.3), it is the
iargest integer q for which

Y(f,)- 2 “iY(t,-J-h T pi~(t,z~i)=O(hq+l)
i=l i=O

as h -0, when y(t) is an arbitrary smooth function. It can be equivalently defined
as the largest integer q for which the local error y,-- y(d,) = O(hq+‘) when (2.3) ks
used to take one step with all past values exact (y, _ i = y(t, _ J for i 3 1). In general,
a method of order q yields gfobal errors yn - y(r,) = O(h4) when integrating from to

14 BYRNE AND HINDMARSH

to a fixed t,=t with h-+0 (n=(t-top + co). The analogous definitions and
results for (2.4) are straightforward, although the theory is complicated by the
variability of hi.

In the practical implementation of linear multistep methods, the most significant
distinction among them is between implicit and explicit methods. A method given
by (2.3) or (2.4) is explicit if PO = 0 (jr, is absent), and is implicit otherwise. For an
implicit method, an algebraic system of the form

Y,=Wof(tnf Y,)+ C laiY,-i~hpiji,-i)=hBof(t,, Y,)+a,
i>l

(2.10)

must be solved for yn at each step. The choice methods for doing this has a
profound impact on the efficiency of the resulting algorithm or solver. As f is in
general nonlinear, an iterative procedure of some type is usually used. The simplest
such procedure is functional (or fixed-point) iteration,

Yn(m+ 1) = MJk, YncmJ + a, (m = 0, l,...),

where ynCoj is an initial guess for y, and m denotes the iteration count. This works
reasonably well for nonstiff problems, but for stiff problems it converges only when
h is smaller than or comparable to the smallest time constant in the system, and
such a restriction on h is unacceptable because of excessive computer run time. (For
this reason, an implicit formula combined with functional iteration is usually
referred to as an explicit method. Because of the restriction on the step size, it is
certainly a non-stiff method.)

For stiff problems, the choices most often made for solving (2.10) are based on
Newton’s method. For the problem in the form

F(Y,) = Y,, - WJk, YJ -a, = 0,

Newton iteration takes the form

Y n(m+l) = y,(m) - CF,(Y,&I -‘WY,,,,)

or

CI - wv&~ Yn(m))l(Yn(m+ 1) - Ynw) = -F(Yfz,d

This is in general a powerful method, but has some considerable costs associated
with it. The first is that of computing and storing the Jacobian matrix f,, and the
second is in the solution of the Nx N linear system for the correction
Yn(m+l) -ynCmY Both costs can be reduced greatly by modifying the iteration and
paying close attention to matrix structures. For one thing, f, need not be recom-
puted in (2.11) at every iteration; little is lost in speed of convergence with the use
of a fixed value of the Jacobian in the iterations for one time step. By the same
reasoning, f, can be kept fixed for several steps, provided a test can be made to

STIFF ODE SOLVERS 15

decide when to recompute it. For a given problem, f, may well have a sparse struc-
ture which can be exploited to reduce the costs of computing and storing it and of
solving the system. Once a value of the matrix

F,=P=J-h&f, (2.1.2)

is computed (or approximated), suitable preprocessing of it (such as LU
factorization) can be done, depending on the structure assume
subsequent solutions of linear systems

Pdy= -F

are as inexpensive as possible. By the way, some current work brought to our atten-
tion warrants the following caveat: if the number of equations in the syste

eater than one, then the explicit inverse [F,(y,,,,)j -i should not be ~orn~~te
ther, the form (2.11) should be solved by modern numerical linear a~gebra~

methods. The reason is efficiency.
Regardless of the choice of iteration, an initial guess ynCo, is always need

is easily obtained by appealing to any of the explicit linear multi§te~ meth
Linear multistep methods can also be applied to the implicit ODE proble

with relatively little additional effort. An approach that is usually
unecononzical is to apply them to the equivalent system

This replaces evaluations of g with more costly evaluations of f and, what is much
worse, it replaces matrices A and g,, which typically have a sparse structure, with a
matrix f, which is most likely dense (not sparse). Instead, if we multiply any of the
basic formulas (2.3) or (2.4) by A(t,, y,) and use (2.10) we get an algebraic system
of the form

G(Y,) = N~,Y,) jr, -Wog(k YJ - A(L Y,) 8, = (2.13)
with a, as before (known). The various ways of treating (2.10) by Newton-like
methods in the case of an explicit ODE also apply here, in terms of iterations of the
form

G,[Y n(m + 1) - Y,(m) (2.14)

Thus, for example, if A is at most weakly dependent on y, a good approximation to
G, is

G,=A-&gy

evaluated at some convenient point. Note the similarity to the matrix in the
explicit ODE case (2.12). If A depends strongly on y, 6, must include other terms

581/70/l-2

16 BYRNE AND HINDMARSH

that involve aA/@. In either case, it is clear that the cost of the major operations in
a step is only marginally greater for this approach to A9 = g than they would be for
the corresponding stiff method applied to a similar problem of the form jr = f.

Formally, these techniques also apply to the case where A is singular, i.e., when
(2.2) is a differential-algebraic system (DAS), provided that the matrix 6, is non-
singular and that all of the initial data y(tO), jl(t,) is available. However, this is a
very risky approach to DASs in general, even those of the form (2.2), without an
understanding of the DAS in question [108, 581. The problem may be of a type for
which these ODE-based methods work well, or it may be of a type that is
numerically ill-posed for these methods, or even mathematically ill-posed (indepen-
dent of the method). Fortunately, it is often possible to reformulate ill-posed DAS
problems so that they are solvable with these methods.

Returning to the Newton or modified Newton iterations (2.11) and (2.14), the
manner in which this linear system is treated is extremely important. In fact, the
technique for storing and processing the matrix F, or G, often makes the difference
between being able to solve a stiff ODE system in the fast core of a computer and
being unable to do so. For example, if the structure of this matrix is banded, then
only the elements in this band need to be stored and used. Other matrix structures
such as general sparse structure and block banded structure have also been taken
advantage of.

For general use, linear multipstep formulas are of little value without a means of
selecting values of the step size h and method order q for which the method is
reasonably accurate and efticient. The algorithms for doing this constitute a major
distinction between modern ODE software and its obsolete counterparts. These
algorithms are the result of considerable research and development efforts, which
are still continuing, and their impact on the accuracy and economy achievable with
modern codes is often quite dramatic. A key ingredient here is that the step and
order selection is based on estimates of the actual errors committed by the
numerical method, rather than ad hoc rules often used.

The basic features of these error control algorithms are quite simple. On taking a
step to t,, of size h at order q, the error E(q, h) committed on the step, according to
the local error theory, is given asymptotically by Ch4+ 1 y“’ + “(t,) for some known
constant C, independent of the problem being solved. Now we (typically) impose a
condition on h and q that some norm of E(q, h) satisfy

IIE(q, h)ll ds (2.15)

for a user specified error tolerance parameter E. The derivative ycq + ” can be easily
estimated by finite differences using quantities already generated in the com-
putation. Thus we can compute a step size hi at which /jE(q, h)]] is about equal to E.
This is the step size considered appropriate at order q for the current step and the
next few steps. Similarly, E(q’, h) can be estimated for other orders q’ (typically)
restricted to q & l), and values hi obtained on the same basis. Now the code simply
chooses the order qt or q which gives the largest step size, and uses that maximum

STIFF ODE SOLVERS !7

step size. If the step just taken failed the error test (2.153, the step is redone accord-
ingly. At the beginning of the problem, the order q is usually set to 1, for which no
past values prior to yP arc needed, and the order then increases to whatever vaiue is
found to be most efficient. The details of the various decisions, approximations,
fudge factors. etc., vary considerably and arc highly heuristic in nature. But exten-
sive use has shown that these ideas work well in practice.

The selection process for h and y that we just sketched is incorporated in various
codes. An additional constraint, the requirement of monotone decreasing differences
(with respect to order), is imposed in others [127]. This illustrates the concept that
different underlying algorithms lead to different computational strategies.

B. Runge-Kuttu Metizotis

The class of Runge-Kutta methods is also wide and varied, and has a iong
history. However, it is less often used in current software, especially for stiff
problems. and so will be summarized only briefly here.

Runge-Ku!ta methods arc one-step methods, but involve intermediate stages in a
step. They can bc either explicit or implicit. The general r-stage explicit Runge-
Kur~a for $ = f can be written as

k,=hf(r,.,,yn.,) (2.16)

k, = hf(t,,. , + c:h. y,j , + ‘c’ a;,k,) ii= 7 -.._., r; (?.l:i
,- !

Y,, =Y n , t i b,k,, (3.1Y.l
r-1

where the CI,,, b;, and c, are constants satisfying c, = XI; i II,,. Through rather
tedious calculations. we could determine the order of accuracy I/ of such a method.
and arrive al coefficient values which yield given orders (4 never exceeds I). At the
same time. it is often possible to embed a method of order q -- 1 within the method
of order y, and this makes a dynamic error control possible, with little added effort,
based on the difference between the two y,, values.

For stiff problems, explicit Runge-Kutta methods are inappropriate, and
analogous implicit methods have been developed. The genera! r-stage implicit
Rungc-Kutta method can be written

r

k,=hf(t,, , +-(.A s,i- , + 1 u,,k,f (i= I...., 1.) (2.i9L
I 1

Y,,=Y,, I+ 1 h,k,.
,-I

(2.20)

18 BYRNE AND HINDMARSH

So we need to solve an algebraic system in rN unknowns. Several special cases have
been studied in which this algebraic problem is less formidable. One is the semi-
implicit case where the matrix (+) is lower triangular and so each ki involves solv-
ing an algebraic system of equations of size N. A Newton-like solution of the
equation for ki involves a matrix of the form I - ha,,fy, and a further reduction in
algebraic effort can be achieved if we take all aii equal-the. so-called diagonally
implicit case Cl]. Other (more complicated) approaches have been used to reduce
the cost of solving the fully implicit case to a feasible level. One of these is that of
singly implicit Runge-Kutta method [13] characterized by the fact that the matrix
(aV) has a single r-fold eigenvalue, thereby permitting a linear transformation to an
algebraic system that resembles that of the diagonally implicit case.

Runge-Kutta (RK) methods have been generalized in another direction, in the
form of Rosenbrock methods and so-called ROW [105, 881. Here terms involving
the Jacobian matrix are added to (2.19), so that it has the form

ki = hf,(t, _ 1 + cih, yn- 1 c jj a,kj) + hJ i d,ki.
j=l j=i

Here J is either aflay evaluated at yn or some approximation to that Jacobian, and
the coefficients di, are chosen to optimize order and stability properties. Setting all
the dii equal reduces the required matrix computation to a minimum.

Another variation on implicit Runge-Kutta methods is the class of mono-implicit
RK methods [29], in which a term involving the unknown y, is added to the y
argument of f in (2.17), within the equations for an explicit RK method.

C. Other Methods

The special challenges posed by stiff ODE problems have led to searches for
suitable methods outside of the traditional linear multistep and Runge-Kutta
classes. One reason for including these methods is completeness. Another is that for
some problems BDF does not work very well. In particular, for highly oscillatory
problems, BDF methods with order greater than 2 do not work well. That said, we
also warn the user that the exotic may not be robust. We will only mention the
other methods here, as their value has not yet been fully assessed. The list below is
intended to be neither exhaustive nor in any particular order.

(i) Collocation methods. If the solution function y(t) is approximated by a
piecewise polynomial function p(t), then collocation methods arise by posing con-
ditions of the form

iJ(t) = f(t, P(f))

for a set of discrete values of t [82, 83, 841. These methods can also be regarded as
implicit Runge-Kutta or block methods.

S-I’IFF ODE SOLVERS 19

(ii) Block und composite methods. If one linear multistep method is used to

advance from 1:) to t, , another from t, to 12, and so on up to t,, after which the
cycle is repeated, the result is a cyclic composite multistep method CS, 140, 13%
137-j. If instead the values at all of the points f\,..., t, are defined by a coupled set of
L equations, the method is called a block or block-implicit method Cl44 31. (See
&o Rosser [I 151, who noted the similarity of these methods to Runge-Kurta
methods.)

(iii) ~.utrupolation. Suppose that a given basic method (usually a one-step
method) is used to approximate y(t) whenever y(t - H) is given, using n Steps of
size /I= II!n. Then an extrapolation method arises by considering the result.
denoted y(t, h). as a function of h which can be approximated wei1 (usually by’ a
polynomial or a rational function) by means of the data obtained from several
values of h. This approximation is evaluated at h =0 to get the final extrapoiated
approximation to y(t) [98, 51. These can be thought of as multistage, one-step
methods, akin to Runge- Kutta. For recent review of extrapo!ation methods, scc
[401.

(iv] Alultidwicutiw methods. Linear multistep methods that involve
derivatives of order two or more are of interest, even though the ODES are first
order [48]. Their implemention requires a means of accurately computing ihe
higher order derivatives as well as solving the implicit reiation defining the step.

v. Bkwded methods und mtltrix coeJjCicien/ methods. Motivated by the attrac-
tive fcaturcs of certain second-derivative methods, a new class of methods- -blended
multistep methods- -was developed in which the formuia is a linear combination of
tivo first derivative formulas (e.g., Adams and BDF), involving the Jacobian matrix
in the coefficients [132]. Blended formulas of an extended type are given by 1281.
Marc generally, first-derivative multistep formulas with matrix-valued coeff,cients
have been studied [95].

(vi) Aceruging. An averaging method is one in which an integration step (of
cizc h) is taken with each of several linear multistep (or other) methods. and the
final answer taken to be a linear combination of the individual answers [PI),

(vii) t;ittirrg. In an integration method (such as a linear multistep method)
has one or more fret parameters in it, and if a corresponding number of the
dominant eigenvalues of the problem can be estimated, then the free parameters can
be set so that the method integrates exactly the exponential modes corresponding
to those cigenvalucs. The result is an exponential fitting method [l(Q 273.

(viii) H~hrid mc~thods. The features of linear multistep methods and of
Runge-Kutta methods can be combined in hybrid multistag&-multistep methods
[15, 16, 17, 251. One can even include multiderivative methods in such a hybrid
class [65]. A large number of free parameters then has to be dealt with by way of
accuracy and stability criteria. Application-oriented hybrid methods are also com-
mon, wherein some carefully selected components or terms of a system are t:eated
implicitly, and the rest explicitly.

20 BYRNE AND HINDMARSH

(ix) Partitioning. For problems where the stiff eigenvalues (those with
-Re(n) very large) are well separated from the rest, a number of approaches have
been studied to separate out the corresponding modes and treat the problem as
composed of non-stiff and stiff subsystems. (This is a decoupling by equation type.)
Some involve automatic determination of a suitable linear transformation and par-
tition [2, 10, 51, 1431, but these are limited to the case of relatively few stiff eigen-
values. Others are suitable when the user can specify an appropriate partition
[47, SO].

(x) One-leg methods. A class of methods that resembles that of classical linear
multistep methods was introduced by Dahlquist [38], who calls them one-leg
methods [38, 1423. They are based on formulas of the type

-OIoJ’n= $J a,y,-<+hf fJ /?itn-i> 2 /?iJ’n-i
i= 1 (

(2.21)
i=O j-0 1

with a normalization C pi= 1.

If f does not depend on t and is linear in y, this is the same as a linear multistep
method, but for general f it may have some advantages over linear multistep
methods.

D. Pros and Cons

Without going into too much detail about the various methods and their
implementations, it is nevertheless possible to state some advantages and disadvan-
tages of the various method classes of stiff problems. Naturally, these lists depend
on the problem environment. As a general rule, for problems which are small in size
and inexpensive in function evaluations (of f or g, etc.), there is little difference
among methods in performance, and the main criterion for a choice should be the
convenience of accessing a solver and setting up the probIem for the use of the
solver. At the other extreme, problems with large sizes and expensive functions can
display vast performance differences among the various methods and solvers. The
comments below are aimed at the environment in which the size and/or the expense
is considerable.

Implicit linear multistep methods possessing suitable stiff stability properties,
including the BDF methods, have some very attractive features for stiff systems:

(1) The method order is easily varied in a dynamic manner.
(2) The (2) T h e

e a s i l y I m p l i c i t can be done in a very inexpen-
sive way.

(3) The algebraic system to be solved at each step is only of size N (not a
multiple of N), and this system, namely (2.10) or (2.13), is highly amenable to a
wide class of iterative nonlinear system methods, notably Newton’s method and its
variants [23].

STIFF ODE SOLVERS 21

n a Newton or Newton-like solution sf the algebraic system, the ~c~~o~
9 involved is related very closely to the functions
ly one such N x N matrix needs to be stored at any time.

(5) The Newton matrix, and thus the problem-related mat
which it is composed, do not need to be very accurate. Cons
often be tolerated, with only a modest compensatdng price in
One consequence of this is that terms in the Jacobian w
but numerically smali can be discarded. Another is th
not be evaluated at every step. (See Byrne and ~i~dma~sh [23

e direct relationship of the Newton matrix to the functions
roblem allows for the exploitation of sparse structure in the latter,
ous advantages in both storage and cost for large and/or expensive

(7) An accurate initial gues for use in a mo
available by way of an explicit formula, with the result

er step is typically less than 2.

Very few other methods have all of these advantages.
The chief disadvantages of stiff multistep methods stem from their ~n~cr~~t muf-

igh order accuracy requires high st number K, hence
d numerous steps of smailer size ve to be taken to
r. (Alternatively, another method could be used for st
od can also lose much of its efficiency advantage if
discontinuities; then a one-step method, which has n

ast solution values, has a distinct advantage inally,
step methods (especially the BDFs) have relatively po

the problem has highly oscillatory modes.
unge-Kutta methods, only those of implicit t hould be con-
roblems. For the sake of efficiency in so gebraic system
r-stage method), only certain implicit R s are of interest.

For y = f with a diagonally implicit method, a newton-~ikc iteration involves only a
single N x N matrix of the form .I - h/X,, but r different f values and right-bard side
vectors. The same result holds for the singly implicit methods. This is much more
economical than other choices of imphc utta methods, but conside
more costly (per step) than the typical ere on average less
two f evaluations and right-hand side

e implicit Runge-Kutta methods is their one-ste
tage in starting up and when crossin
they are able to achieve high o

algorithms are of fi order, but not al% [I
tests, e.g., Enright, 11, Lindberg /49 1, h

variability of order can be very much important in stiff $3 solvers.

22 BYRNE AND HINDMARSH

Collocation methods and block methods suffer from the same inefficiencies in the
algebraic system solution as the implicit Runge-Kutta methods. In some cases,
storage of several Nx N matrices is required. For composite multistep, a very
similar difficulty arises because of the different individual methods used. However, it
is possible to avoid this difficulty, at least for 2-stage composite methods, by choos-
ing the coefficients PO to be the same in each stage 11401. With the inclusion of a
variable order, algorithms based on these methods appear to have some features
superior to BDF algorithms.

Extrapolation methods offer a natural way of achieving arbitrary accuracy
orders, but again at a high cost in the algebraic system solution. In solving j, = f,
the Newton matrices for the individual steps all have the same form, I - h&J, but
the values of /& vary widely among the step sequences used within each major
step. Thus the costs in storage and/or matrix operations is necessarily considerably
higher (per step) than for ordinary linear multistep methods. However, the larger
step sizes often outweigh this cost. Exactly the same comments apply to averaging
methods.

Multiderivative methods, especially second derivative methods, can be formed
with very attractive order and stiff stability properties. The price one must pay is in
dealing with the second derivative, which for j = f given by

and possibly with higher derivatives, if any are involved. The effect of this on the
Newton iteration is that the Newton matrix is, in general, a complicated com-
bination of the various partial derivatives of f. If the system is autonomous (f, = 0),
or is made autonomous, then an approximate Newton matrix for a second-
derivative method can be formed as a quadratic polynomial in J = fy, and a con-
siderable reduction in the effort to do the Newton iterations is possible. However,
the effort and storage are still greater than for, say, BDF methods.

Blended multistep methods composed from Adams and BDF formulas appear to
have all the desirable accuracy and stability properties of second-derivative
methods, but almost none of the obstacles. For jr = f, the formulas and the Newton
iteration to solve them tolerate errors in the Jacobian matrix, and allow for the use
of sparse structure. Each Newton-like iteration requires only one f evaluation, but
two linear system solutions (with the same matrix I - yJ).

Fitting methods appear to be useful only when the number of stiff eigenvalues is
quite small, say less than 10, and only when fairly good estimates of those eigen-
values are available. The process of fitting the free parameters to the given exponen-
tial modes is rather complicated and must be repeated frequently throughout the
integration, generally.

Hybrid methods include so many different possibilities that it is presently
impossible to make general comments about them. But a few isolated studies of
hybrid methods have shown some promise.

Partitioning methods appear to be suitable for general use only if they include a

STIFF ODE SOLVERS 23

reliable automatic way of constructing the linear transformation and the
of the transformed dependent variable vector. So far, methods for doing th
that the number of stiff modes be a fairly small fraction of the ~r~blern size iV.

One-leg methods are closely related to linear multistep methods and share most
of the properties which make the latter attractive for stiff systems. Moreover the
variable step forms of one-leg methods seem to be more stable.
details are fully worked out, certain one-leg methods are likely to be fully com-
petitive with present linear multistep methods.

3. SOFTWARE

We now turn to software for solving stiff ordinary differential equations. In so
doing, it is appropriate to give some caveats and a brief history of stiff solvers. Then
each of several groups of solvers will be described.

The following does not constitute an endorsement of
does it necessarily imply that unnamed solvers are not w
can say that if you are using a 1Zline solver for differential equations in a~ytb~~g
bigger than a hand calculator, you should consider using one of the cited packages
instead. Recently, we have noted that there is commercially available ‘“software”
for differential equations with no error control, a user-specified fixed step size, no
warning messages, and so on. We strongly advise against using such programs,
even on a personal computer. The reasons are straightforward. For all but trivial
problems, such programs cannot be sufficiently reliable for accurate ~om~utati~~a~
results. In short, consider one of the solvers mentioned here.

A. A Brief Historical Background

We now turn to a short history of backward di~erentiati~n form~ia-based
solvers. This is an attempt to answer some questions which are frequently as
us. We also intend to give the reader some historical perspective of 0

TQ our knowledge, the first notion of stiffness and the first formal
for solving stiff ODES was reported by Curtiss and Hirschfelder [347. They use
the term stifSfor ODES because the corresponding servome
Gear became interested in stiff problems while visiti
Laboratory. He developed a software package that used backward differe~t~ati~~
formulas (BDFs), which had not enjoyed much fa among numerical analysts,
e.g., [66]. Gear’s pioneering code was called DIES

Subsequently, Gear revised DIFSUB while visitin tanford University in 1959.
The new code was called STIFF. R. 5. Gelinas, at Eawrence Livermore
Laboratory, had been having trouble with some chemical kineti
acquired STIFF and found that it could solve his kinetics models.
had enlisted his co-worker, Hindmarsh, as a collaborator. consultation from

24 BYRNE AND HINDMARSH

Gear, they rewrote STIFF and called the new package GEAR. By 1974, the code
GEAR had gone through two revisions by Hindmarsh 1671.

All of these packages use BDF for the stiff solver option, and explicit Adams
predictors and implicit Adams correctors for the non-stiff option. They also use a
fixed time step size h for several steps. Then, they test to see if h should be changed
dynamically to effect efficient and accurate solutions. They can also dynamically
change the order of the formula of integration for efficiency and accuracy. These
codes differ from one another in several ways-tuning paramters, code structure,
linear algebra routines, user interfaces, and overall robustness.

Several variants of GEAR had been developed by 1976. GEARB, GEARS, and
GEARBI differed from GEAR in the linear algebra routines [71, 70, 1291. Con-
sequently, problems of various structures could be attacked with economy of both
storage and computer time. Other variants of GEAR were designed to take advan-
tage of computer architecture and/or problem structure-GEARBIL, GEARIB,
GEARV, GEARST [68, 69, 70, 73, 1031.

In 1973 Byrne was a summer visitor at Lawrence Livermore National
Laboratory. There Hindmarsh, R. P. Dickinson, Jr., R. J. Gelinas and others were
concerned with diurnal kinetics problems. In these, the chemical reactions among
minor species were turned on by the rising of then sun and turned off at sunset.
They felt that averaging, pseudo-steady-state methods, and periodic restarts were
not the answer. The GEAR package used fixed step size for several time steps.
Then, it adjusted the step size by interpolating previously computed values. For the
diurnal kinetics model, the implementation of this fixed-step-interpolate strategy
was not stable. One consequence was the initiation or’ a project to develop an
integration package for stiff ODE systems with the capability of adjusting its time
step after each integration step, Because this ability to change the step size at each
time step is built into the formula, we call this a variable-step method.

The variable step BDF methods were incorporated in EPISODE and its variants.
These developments were intermingled with the final revisions of GEAR and its
variants [73].

In 1976 we collaborated in a report on calling sequences for stiff ODE solvers
[78]. This report was based on several discussions and workshops held during 1975
and 1976. This evolved into a project to develop the package called ELSODE. Sub-
sequently, as a result of a wider effort to standarize the user interface for ODE
solvers [12], this evolved into LSODE [74]. In many ways, LSODE is similar to
GEAR, Rev. 3. However, LSODE has a user interface that is much more flexible
than GEAR, Rev. 3. LSODE also uses the LINPACK linear algebra packages,
dynamic storage allocation, more extensive modularization, and a wide range of
types of error controls.

Of course variants of LSODE have been developed to handle problems of
various structures, as we shall see,

So far, we have given a rather quick sketch of ODE software along just one path.
Even in the BDF tree, there are other computer codes and developments. Valuable
contributions were also made by R, W. Klopfenstein and F. T. Krogh [90, 92, 107,

931. For variable step BDF, Brayton, Gustavson, and Hachtel Ill] and Hachtei,
Drayton, and Gustavson [64] predated EPISODE with their papers on a method
ior solving differential-algebraic systems. Gear [561 had looked at solving differen-
tial-algebraic systems with DlFSUB. Riibncr-Peterson [I 16-j had also developed a
RDF scheme for solving differential-algebraic systems. Curtis [33] dexzlopcd F’.4C-
SIMILE, which solves certain kinds of differential-algebraic systems with a BDF
method. (Ysrver installed a sparse solver (MA28) in GEAR, Rev. 2 within FOKSIM
[26]. Krogh and Stewart [94] developed a new impicmentation oi BDF mcthcds
based on stability with respect to Newton matrix errors. There arc other such
developments. too numerous to mention here.

Now, let us see what software is currently readily availab!c and the type or types
of problems each package can solve.

LSODF [74] is the basic member of the LSODE family called ODEPA!X
[76]. ISODE is desgined to solve stiff and non-stiff problems in the canonicai form
(1.1). (1.2). For these problems, the Jacobian matrix may be either dense (very few
zero elements) or banded.

LSODI [74, 75: 761 is intended to solve Iincarly implicit ODES of the form
(1.143, (1.15). LSODI aliows A and g? to both be either dense or banded.

If WC want to solve problems of the form (1.1) (1.2) with a sparse Jacobian
matrix. then we could use LSODES. This package uses components of the Yale
Sparse Package [*?S. 46 J.

LSODA has a novel feature. It automatically switches between stiff (BDF) and
non-stiff (Adams) methods according to an algorithm developed by Pctzold [t !()].
The basic purpose is to relieve the user of the responsibility of determining whethc:.
and also whcrc, a problem is stiff or non-stiff. For cxamplc, LSODA woulo se&t
the non-stiff method in transient regions and the stiff methods elsewhere. A, for
gcncral problem structure, the problem class addressed is essentially the same as
that for LSODE (full and banded Jacobians).

LSODAR is based on LSODA. but includes a rootfinder. It gives the tiscr the
capability of computing the zeros of a set of functions : z,(/. y): ! < i < nQ. This is
calied the ,T-sfop capability by F. 7’. Krogh, whom we believe to have coined the
term. For exampie. WC could set %,:= J, -- C, in the simulation of a continuously
stirred tank reactor (chemical) or CT where the ideal js to stop the rezctions z.nd
recover the product when one or more components I:, have reached a certain moic
fraction C,. Other examples might include changing the system of differential
equations when a particle reaches a container ~211 in a tracking problem. Krogh
has used the example of extending an antenna and revising the center of gravity sf ;?
space vehic!e when it reaches a prescribed position.

LSOIBT is designed for problems of the form (1.14) (!.15). However, LS0iB’T
assumes that A and gy are both block-tridiagonal in structure. By this. ‘6~ sin@\:
mean that thcsc matrices can be partitioned into n X~J blocks. These blocks in turn

26 BYRNE AND HINDMARSH

form three stripes-the main block diagonal, and the principal upper and lower
block diagonals. As we noted previously, this problem structure arises in the finite
element solution of one dimensional PDEs and elsewhere.

This LSODE family, also known as ODEPACK, is available from the National
Energy Software Center, whose address is given in the Appendix.

C. EPISODE and Its Variants

For some problems, changes occur frequently or dramatically. Consequently, the
ability to change the step size at each integration step can be advantageous. That is
precisely why we develop the EPISODE family. EPISODE [20, 793 is intended for
problems of the form (l.l), (1.2) with dense Jacobian matrices. EPISODE does
have a non-stiff option. We generally suggest that EPISODE be tried after LSODE
has failed on a stiff problem with occasional fronts, because the overhead for
EPISODE is frequently higher than that for LSODE. Moreover, the user interface
is not as flexible as that for LSODE. Finally, EPISODE does not use the modern
linear algebra routines that LSODE does.

EPISODEB [21] treats problems with banded Jacobians of the same type as
EPISODE. We would use EPISODEB after the banded option of LSODE failed.

EPISODEIB [19] is designed to solve banded problems from the class that
LSODI solves. As another member of the EPISODE family, it is intended for use
on problems with fronts.

EPISODE, EPISODEB, and EPISODEIB are all available from the National
Energy Software Center.

D. Other Descendants of GEAR and EPISODE

One of the GEAR family has not yet been superseded by a corresponding mem-
ber of the LSODE family. That package is GEARBI [70], which is based on
GEAR, Rev. 3. GEARBI is designed to solve problems with a general block struc-
ture by block successive overrelaxation (block SOR).

DGEAR is the stiff ODE solver in the IMSL library [SS]. This package is based
on GEAR, Rev. 3, which is a precursor of LSODE. DGEAR handles both stiff and
non-stiff problems. For stiff problems, the structure of J may be banded or dense.

The Numerical Algorithm Group (NAG) library [104] lists five stiff ODE
solvers. To some extent, their purposes correspond to those of the members of
ODEPACK (the LSODE family). The codes and purposes are as follows:

l D02EAF-Integration over an interval.
l D02EBF-Integration over an interval, with intermediate output.
l D02EGF-Integration until a component of the solution reaches a

prescribed value.
l D02EHF-Integration until a function of the solution is equal to zero.

F-A comprehensive integration
above codes).

These routines are based on GEAR, Rev. 3 [60].
DEBDF is a driver, which calls a modified version of LS E. The complete

DEBDF package is a member of the SLATEC library, which may be obtained from
the National Energy Software Center. The DEBDF package is also a member of
DEPAC [128]*

A recent descendant of EPISODE is a code called TORANAGA [4].
variable-step variable-order BDF methods, but differs from most other stiff
because it is designed for an environment of large scale problems. It uses a memory
management package, requires the user to supply whatever linear system SQ
appropriate, has an elaborate dump/restart, and numerous o
puts.

The software package SPRINT [7] is designed for both
SPRINT is derived from LSODI and LSODES.

E. Differential-Algebraic System Solvers

Software for differential-algebraic systems is now readily available. Earlier, we
saw that systems such as (1.12) (1.13) can arise from solving parabolic PDEs
the numerical method of lines via a Galerkin procedure. They can also arise in solv-
ing mixed parabolic-elliptic systems of PDEs or directly in certain models of reac-
tive flows or electronic networks. In the past a version of GEAR, called GEA
[68], was used to solve differential and differential-algebraic systems of the linearly
implicit form in numerical method of lines codes for PDEs. LSODI has also been
used for this purpose. Earlier work [56, 64, 11, 116, 131, 91] focused on similar
systems of differential-algebraic equations that arise directly in the situation of corn-.
plex electrical circuits.

More recent work on differential-algebraic systems has led to the development of
DASSE [IO9], a differential-algebraic system solver. DASSL is intended for the
solution of problems of the general form

g(t, y, jr)=0 (3.1)

Y(b) = 90 (3.2)

jr(to) = PO. (3.3’)

Here, the data (3.3) may be either prescribed or computed from (3.1)-(3.2).
case, (3.1)-(3.3) must be consistent, i.e., g(to, yO, pO) = 0. It is certainly important to
note that differential-algebraic systems are not as straightforward as we might
suppose [lOS, 583.

28 BYRNE AND HINDMARSH

F. Runge-Kutta Codes

Runge-Kutta codes for stiff ODES are not generally available in the more com-
mon software libraries in the United States. Moreover, some of the Runge-Kutta
codes reported on elsewhere are listed as experimental [53].

Three codes based on implicit Runge-Kutta methods of the traditional type have
become well known. DIRK [l] uses diagonally-implicit RK methods with fixed
(selectable) orders up to four. STRIDE [14] uses singly-implicit methods in a
variable-order manner, up to order 15. An early code, COLODE [S3, 841 uses fully
implicit RK methods.

A number of solvers based on Rosenbrock-type methods are mentioned in the
literature. Kaps and Rentrop [87] mention GRK4A and GRK4T. Gottwald and
Wanner [62] mention ROW4A. Shampine [123] mentions DEGRK. All of these
have embedded methods of orders 3 and 4. Comparison tests on these and other
stiff solvers are given in Kaps, Poon, and Bui [SS].

G. Blended and Composite Multistep Codes

Blended linear multistep methods are best represented by the code BLEND
[132). It uses a variable-order blend of Adams and BDF methods, of order up to 7.

An early cyclic composite multistep code is STINT [136, 1371. It is also variable-
order with orders up to 7. More recent work on cyclic composite methods has
focused on practical implementation issues, and has resulted in a code called
ODIOUS [140, 1391. However, the authors of ODIOUS appear to regard it as
experimental, and are still testing various coefficient choices in it.

H. Extrapolation Codes

An early extrapolation code is IMPEX2 [98], which uses an extrapolated
implicit midpoint rule. A more recent code is METANl [S], which uses a semi-
implicit midpoint rule. A variant of the latter was also developed for the case of a
sparse Jacobian, and called METASl [39]. The code LIMEX [41] is intended to
solve differential-algebraic systems in the linearly implicit form (1.14), with A
singular and constant.

1. Second-Derivative Codes

An early implementation of second-derivative methods was the solver SDBASIC
[48]. A more recent and more efficient implementation is SDSTEP [1171. Both are
variable-order, with orders up to 9, and require the user to supply the Jacobian
matrix exactly.

STIFF ODE SOLVERS 29

4. EXAMPLE PROBLEMS AND Ccxx USAGE

ere we present several problems for computation. Each is easily desc~~~e~.
owever, we feel these examples, as presented, represent a cross section of real

problems we have seen over the span of our careers. In what follows, we g
do not rewrite or rescale the ODES, because we beheve the avera
Some problems even have a closed form (analytic) sohuion, e.g.,
Despite their simplicity, these examples often present ~~t~rest~~g lessons, e.g.
significance of features in a solution, importance of repeated regions of stiffness,
diurnal kinetics, incompatible boundary and initial conditions, and so on. The basic
problems are described in Subsection A. The numerical results an
discussion are given in Subsection B.

A. The Example Prohlems

oberrson’s Problem

We have already seen an example of a neutrally (co~d~t~o~a~~y~ stable, dense
DES in normal form. For our first problem, we use
), (1.4) on the time interval 0 <t<4x 107. By choosing this interval,

we place severe demands on the error control and step size control of the solvers.
The reason is this: if a zero or near-zero eigenv oes positive in the
numerical calculations, the system becomes unstable. as t gets larger, we
expect the step size h to increase dramatically for e need to increase
step size for efficiency and the simultaneous need rol
run somewhat counter to one another. Yet, this is precisely me
we look for in high quality ODE software.

Problem Z-The Field Noyes Chemical Oscillator

This is another small, dense system in normal form. wever, it is ~ote~t~al~~
iconoclastic, because there are periodic transients folio

sents a chemical oscillator, a chemical
t the concentrations of three chemical species vary ~~r~od~c~~~~ in.
less form the system is [52],

9’ = s(y’ - y’y2 + yi - q[yl-y)

y-2 = (y’ - y* - yy)I‘$

y = w(yl - y3),

where

s = 11.21, w = 0.1610,

30 BYRNE AND HINDMARSH

The initial data we use are

y’(O) = 4.0, y2(0) = 1.1, y3(0) = 4.0 (4.3)

and are due to Enright and Hull [SO].
To connect this model with the chemistry somewhat, we note that y’ is the scaled

concentration of bromous acid [HBrO,], y2 is the scaled concentration of the
bromide ion [Br-1, and y3 is the scaled concentration of cerium IV [Ce(IV)]. By
looking at the reaction rate coefficients in (4.1) and (4.2), we expect to see three dis-
parate time scales in the solution. By virtue of hindsight, we know that if the output
points are too far apart, we can expect to lose some features in the solution of this
problem.

Problem ~-TWO Species Diurnal Kinetics

This is also a small, dense problem in normal form. This problem is meaningful
to us because it and similar problems led us to begin our collaboration and the
development of the EPISODE family. This model represents the Chapman
mechanism for the generation of ozone and the oxygen singlet. It can be a severe
test for a stiff ODE package. The symbolic representation for the four reactions in
this model are [43],

o+o,~ 03, k,
o-to,- 202, k,

0, -5 20, k

O++ 0+02, k4

(4.4)

where ki denotes the reaction rate for i= 1,2, 3,4, it4 denotes some molecule
required to carry off excess energy, /iv indicates a photo chemical reaction, and 0,
O,, and O3 represent the oxygen singlet, oxygen, and ozone, respectively. In the
example, the concentration of O,, denoted by CO,], will be held constant, the rates
k, and k, are fixed and k3 and k4 vary diurnally. If y’ = [0], y* = [O,] and
y3 = CO,], the system of ordinary differential equations is

j’ = I?‘($, y*, t) E -k, y1y3 -k, y’y* + Zk,(t) y3 + k4(t) y2

j2 = R*(yl, y*, t) = k 1 y1y3 - k2 Y~Y* -k,(t) Y*,
(4.5)

with

y3 = 3.7 x lOi

k, = 1.63 x lo-l6

k, = 4.66 x lo- l6

STIFF ODE SOLVERS 31

exp[-q/sin wt], ki=jo sin cot >

i) sin ot < 0, i=3,4

a3 = 22.62, a4 = 7.601, (4.6)

co = ~c/43200

and

y’(0) = 106, y’(0) = 1o12.

The constant 43,200 is 12 h measured in seconds. Graphs of the solution of this
problem appear in Fig. 4.3. Although this problem only involves three chemical
species and just two of these have concentrations varying in time, it does have
features of larger problems:

e The Jacobian matrix is not a constant.
* The diurnal effect is present.
* The oscillations are fast.
m The time interval used is fairly long, 0 < t < 8~64 x lQ5, or 10 days

Problem 4.-A Kidney Model

The following example was posed as a two point boundary value pro
[I191 and is attributed to Ivo Babuska. In [S] the problem is given as

j’ = a(y3 - yl) y1/y2

j,L -a($-yl)

j3 = [b - c(y3 - y5> - ay3(y3 - y’)]/y4

j4=a(y3-y’)

j5 = - c(y5 - y’)/d,

with

a = 100, b = 0.9, d= IO.

The initial data here are

y’(0) = g(o) = g(o) = 1.0

f+(O) = - 10.
(4.10)

581/70/l-3

32 BYRNE AND HINDMARSH

In the original problem, the remaining condition was y3(1) = y’(1). However, for
O<ttl, we take

~~(0) = 0.990268835 (4.11)

y5(0) = 0.99 (4.12)

y5(0) = 0.9 (4.13)

in turn. For the last two choices of the initial value, the problem is reported to be
stiff. For the first, it is reported to be non-stiff [S].

Babuska and B. Kellogg have told us that this model is indeed similar to a three
tube model of a kidney. Solute and water are exchanged through the walls of the
tubes. Here y’, y5, and y3 represent the concentration of the solute in tubes 1,2,
and 3, respectively. y2 and y4 represent the flow rates of tubes 1 and 3. We expect
this problem to behave like other first order two point boundary value problems.

Problem 5-A Laser Oscillator Model

This pair of coupled equations represents a model of a ruby laser oscillator. If we
let 4 denote photon density and n denote dimensionless population inversion, then
we can write

Pi= -n(a#+P)+y

fj=&pn-o)+z(l+n),

where the parameters are as follows:

a = 1.5 x lo-‘*, /3=2.5~10-~

y =2.1 x 10-6, p = 0.6

o = 0.18, z = 0.016.

The initial conditions are

(4.14)

(4.15)

n(O) = - 1
(4.16)

(b(O) = 0.

This problem is challenging because it is stiff initially, but mildly damped and
oscillatory later. It can be shown that as t + co, n-+0.3- 1.155 x lo-l4 and b--+
3 x lo’* + 0.1798, the steady state values. It suflices here to solve for Og t <
0.7 x lo6 ns = 0.7 ms. Time t is in nanoseconds.

Problem 6-Burgers’ Equation
We have seen the basic idea of the numerical method of lines in Section 1. It is

not particularly difficult to see that the numerical method of lines can impose quite

STIFF ODE SOLVERS 33

a few reqniremcnts on a stiff ODE solver. Among them is the need to track travel-
ing waves.

ith this in mind, we now describe a partial differential equation with traveling
wave solutions. Burgers’ equation [6] for u = U(X, t) is

u, + uu, = vu,*, O<xXl, t>,o (4.i-l)

with subscripts denoting partial differentiation. An exact solution can be s
e

u(x, t)= lfexp
i i

:-$ (4.18)

The initial and Dirichlet boundary conditions are taken directly from (4.18). Note
that the solution is a traveling wave whose speed is dx/dt = 3.

By the way, Burgers equation is a very good example for several reasons:

* It is nonlinear.
0 The exact solution of the PDE is known [6].
a It can be thought of as a hyperbolic problem with artificial diffusion for

small v [32].
0 It is sometimes used in boundary layer calculations for the flow of viscous,

fluids,
5 It is very nearly a standard test problem for PDE solvers.

The simplest method of spatial discretization is to discretize along the x axis with
a uniform mesh and to replace all spatial derivatives in (4.1’7) by (say) centered
finite difference analogues. Thus, if we take

1 A=--..-
N-b1 (4.69)

Ui(t) cc= u(iA, t), i= 0, I,..., N+ 1

then a system of ODES for the method of lines (MOL) approach to solving (4.17)
is

zhi= -(U,/2A)(Ui+l-Uj-])+(V/d2)(Ui+1-2Uj+Uj-l),

~~(0) = [1 + exp(id/2v)] - ‘, i = 1, 2,..., N

u,(t)= [1+exp(-t,/4v)]-1

i = 1, 2,..., N

(4.20)

(4.21)

(4.22)

(4.23)

34 BYRNE AND HINDMARSH

where (4.21)-(4.23) are taken directly from (4.18) and where ~~=u,(t). Although
the problem (4.20)-(4.23) is of the desired form, its exact solution is not known.
The exact solution is known only for the PDE.

Finally, we can note by inspection that the system (4.20) has a tridiagonal
Jacobian matrix. The subdiagonal elements of the Jacobian matrix are

a;t. El. v -.L=.-i+--
hi- 1 24 A2

while the diagonal elements are

(4.24)

(4.25)

and the superdiagonal elements are

(4.26)

for i = 1, 2,..., N, with appropriate exclusions and substitutions of (4.22) and (4.23).
Another method to reduce Brugers equation (4.17) to a system of ODES was

described by Chin, Hedstrom, and Karlsson [32]. Their simplified Galerkin
method uses piecewise linear B-splines or chapeau functions as basis elements for
both test and trial functions. The inner product is taken by applying Simpson’s rule
with the quadrature points taken as the break points for the basis functions. The
system of ODES then has the form

with

Ali = g(t, u)

A = (l/6). (3 diag[l, 4, I]> an Nx N tridiagonal matrix.

If z+(t) is the numerical solution of (4.17) at xi, then

g’= - [uf, 1 - uf- ,-J/44

+ (V/d2)[Ui, I- 224, + ui- 11, i = 1, 2)...) N.

Note that this is almost the same as the right-hand side of the finite difference
equation (4.20). The boundary and initial data can be taken from (4.21)-(4.23). The
Jacobian matrix J for g follows from the above and is described by

agi
-=t~-~/2A+v/A~,
dU,-~

!?& -31/,4~
I

STIFF ODE SOLVERS

and

agj
-= -uj+,/2A+v/A2.
h+ 1

The Newton matrix is

A - h&J

since it is a linearly implicit system of ODES. Note that this procedure can also be
thought of as a collocation procedure. One of the tricks was to interpolate the u2
term rather than to work with u [135].

Problem T-Two Species Diffusion-Diurnal Kinetics: One Dimensional

The main objective of this problem is to combine some of the features of
Problems 3 and 6. This example is another from the general area of transport [9]
and is rather similar to one addressed by Chang, Hindmarsh, and Madsen [3E].
This is a diffusion-reaction problem and has no convective term. Such problems are
fairly common. A description of ci, the concentration of the ith minor c
species in the upper atmosphere, is represented by

g=-& K(z): +R’(c, t), i I i = 1, 2)...) 1,

where z denotes the elevation above the earth in km, and (a/dz)[K(z) &‘/iiz], the
diffusive term, accounts for vertical transport by turbulence. Horizontal ~~~ve~t~~~
is neglected in this simple one-dimensional model. The term P(c, I) is the reaction
term in this system, where c = [c’, c2 ,..., c’]’ is the vector of concentrations.
Systems of this type have been discussed by Chang et al. [31] and solved in the
manner described below.

In this prototypical example, we take I = 2, 30 ,< x d 50, ft<8.64x104 (1
measured in seconds), and K(z) = exp(z/5). lOmE (km2/s), subject to the initial con-
ditions

cyz, 0) = 106y(z), c2(2, 0) = lOyJ(z)

y(z)=l-(~)I+f(f+y.

Boundary conditions are taken to be

g (30, t) = g (SO, t) = 0, i= 1, 2.

(4.28)

The reaction terms R’(c’, c*, t) = R’(c, t) are taken to be identical to those in

36 BYRNE AND HINDMARSH

Problem 3, given by (4.5), (4.6) with c1 = [0], c2 = [O,], and a constant third
species concentration c3 = [0,] = 3.7 x lo6 (denoted y3 in (4.5)).

TO generate a system of ordinary differential equations, we will discretize the
interval 30 <z < 50 and replace all of the spatial derivatives in (4.27) with centered
finite differences. Let M = 50, say, set dz = 20/M, and set zj = 30 +j(dz) for
O<j<M. Next, let c;(t) be the approximation to c’(z~, t) obtained by solving

r~=(dz)-2[Kj+1,2cj+1-(Kj+1,2 +Kj-I/*) Cjf Kj-l/*CJ:-I] +R’(C, t) (4.30)

for i = 1,2; j= 1,2 ,..., M and with Kj, 1,2 = K(zj, r,*) = K(30 + [j _+ l/2] dz). The
boundary conditions are to be replaced by ch = ck in the ODES for cf and by
C ~-1=c~+I in those for CL. The system of N= 2A4 ODES can be specified by
setting y(t) = [c:(t), c:(t), c:(t), c:(t),..., CL(~), &(t)lT. This procedure leads to the
following system of ODES.
At the left hand boundary, we obtain

Y = (~4-2c~3,2 Y3 - w3,2 + K1/2) Y1 + K1,2 Y31 + my12 Y2% t1 (4.31)

g2 = (AZ) -*[K3,2 y4 - (K3,2 + KI,z) Y2 + K1/2 Y41 + R2b1> Y2, I). (4.32)

For 2 6 I < M - 1 (i.e., on the interior of the interval),

~“-‘=(dz)~2[KI+,,2Y2’+‘-(KI+1,*+K~~~,2)y2’-’f~~~,,2Y2~-3l

+ P(y2’- l, y*/, t) (4.33)

1;2’=(dz)-2[K~+1,2y21+2-(K~+~,~+K~~~,2)y11+K~--1,~~21-21

+ P(y2’- l, y”, t). (4.34)

At the right-hand boundary, we obtain

Y ~2M-1=(d~)-2[KiCI+1,2y2M-3-(K~+1,2+K~-~,~)y2M-1+KlcI-~,~y2M-31

+ R’(y*- I, y*y t) (4.35)

Y ~2M=(d~)-2[KM+1,2y2M-2-(K~+~,~+K~-~,~)~2M+K~-~,~~2M-21

+ R*(y*M - 1, yy t). (4.36)

This system is in the desired form jr = f(t, y) and is subject to the initial conditions
taken from (4.28),

y2’- ‘(0) = 109(30 + i AZ)
y”(0) = lo15430 + i AZ) I ’

i = 1, 2 ,..., M. (4.37)

In summary, we have reduced the system of two parabolic PDEs (4.27), subject to
the initial and boundary conditions (4.28) and (4.29), to a system of 2M ODES
(4.31)-(4.36), subject to the initial conditions (4.37). The key step was the dis-

STIFF ODE SOLVERS 37

cretization or chopping up of the regime in the z direction. In particular the
approximation

i K(zj) +)cx (AZ)-21[K(zj+,,,)(c;+, -c;)

- K(zj- 1/2)(cf- CJ- I)]

is important.
Finally, we remark that the Jacobian matrix for this system is a 5-diagonal

matrix: the main diagonal, the two adjacent super diagonals, and the two adjacent
subdiagonals contain all of the nonzero elements. This can be verified by cornp~t~~g
J or simply by noting the couplings in the ODES. The structure of this matrix is
very important in the solution of large systems as we noted earlier in Section 1. 1;
particular the centered finite difference discretization of two coupled parabolic
PDEs of type (4.27) always leads to a 5diagonal matrix. Note that ordering by grid
point and then by species (the reverse of the order above) destroys this structure.

Problem S-Two Species Dujjfusion-Diurnal Kinetics: Two Di~e~sio~~i

This example is based on a pair of PDEs in two dimensions, representing a sim-
ple model of ozone production in the stratosphere with diurnal kinetics. (See also
[76] for comparison tests on this problem.) There are two dependent variables ci,
representing concentrations of O1 (the oxygen singlet) and 0, (ozone) in
moles/cm3, which vary with altitude z and horizontal position x, both
kilometers, with 0 d x d 20, 30 6 z B 50, and with time t in seconds o < t 6 864
(one day). These obey a pair of coupled reaction-diffusion equations

K/,=4x 10-6, K,(z) = lO-*e”“,

where the R’ (cl, c2, t) are identical to those in Problems 3 and 7 (see (
We impose homogeneous Neumann boundary conditions

&‘/8x = 0 at x=0 an x = 20;

aci/az = 0 at z=30 and z== 58.
(4.40)

The initial conditions are given by polynomials that are slightly peaked in the cen-
ter and consistent with the boundary conditions

c’(x, z, 0) = 106cc(x) D(z), c2(x, 2, 0) = lo”2ct(x) P(z)

a(x)E1-(0.1X-1)2+(0.1X-1)4/2

p(z) = 1 - (0.1~ - 4)2 + (0.1~ - 4J4/2.

These initial values agree with observations fairly well.

38 BYRNE AND HINDMARSH

We reduce the PDEs to ODES using spatial central differences and a rectangular
grid with uniform spacings, dx = 20/(J- 1) and dz = 20/(K- 1), as in Problem 7. If
c& denotes the approximation to ci(xj, zk, I>, where xj=(j-l)dX,

z,=30+(k-l)dz, l<.j<J, ldk<K, then we obtain the ODES

t;,k = Ri(cJk, c& t) + (Kh/dx2)(cj+ I,k - 2~;,~ + c;- ,,k)

+ (dz)-2[K,(zk+ l,&;,k+ 1 - c;,k> - &czk- 1,&;,k - $,k- 111. (4.42)

At the boundaries, we take:

c' 0,k = ‘;,k 9 C;+ l,k = &I,,+, Qk and

cjo= c$, i
‘j,K+ 1 = $,K- 19 Vj.

(4.43)

The size of the ODE system is N= 2JK. The variables are indexed first by species,
then by x position, and finally by z position. Thus in jl = f(t, y), we have

Cjk=ym with m=i+2(j-1)+2J(k-1).

The underlying assumption is that J is no bigger than K to keep the bandwidth
minimal.

A strategy similar to this was described by Chang et al. [31] who solved a
system of over 14,000 ODES in a study of the effect of supersonic transports on the
ozone layer. The form of the PDEs was (4.38).

Problem 9-A Two Phase Plug Flow Problem

Here we are concerned with a pair of coupled, implicit differential-algebraic
equations for an unusual pipeline problem [24]. Briefly, we are interested in piping
a stable foam from a holding tank to a processing plant. The foam is composed of
gas bubbles dispersed in a liquid phase. If the foam (core phase) is to be suc-
cessfully piped, it must be surrounded by an incompressible lubricating film
(annular phase). Moreover, the pipeline pressure must be sufficiently high to keep
the core from expanding to touch the wall.

We can develop this model by using the universal velocity law for very large
Reynolds number Row through a smooth pipe for the annular phase. For the
viscous core phase, we assume plug flow and expansion in the radial direction only
when pressure decreases. We also assume a no slip condition at the interface
between the two phases.

The equations describing the problem outlined above are

n[R/(2p)]“‘(R - yc)“(-dP/d~)~‘~

x {2.51n[(pR/2)“2(y,/,u)(--dpldX)1~2-5]+10.5)

- CbQ,, + f’oQ,dl - bYPI = 0 (4.44)

STIFF ODE SOLVERS 39

27c[R/(2p)-J1”(-dP/dx)“*{(2SRy, - 1.25y:)

x ln[(pR/2]‘/2(y,/~)(-dP/dx)“2 - 5]

+ 3Ry, - 2.125~: - 13.6

x Rp[2/Rp)]1’2(-dP/dx)-1’2) - &,=O. (4.45)

In this system, the prescribed parameters are

R = pipe radius (cm)

p = density of the annular phase (g/cm3)

p = viscosity of the annular phase (poise)

P, = inlet or initial pressure (dynes/cm2)

Qa =inlet flow t f ra e or annulus or wetting agent (cm3/s)

Q,, = inlet flow t f th ra e or e core or emulsion (cm3/s)

b = inlet volumetric fraction of the liquid in the foam.

The equations are to be solved for 0 <x 6 L, where L is a prescribed length (
corresponding to several kilometers. The values to be computed at various di
ces down the pipe are pressure P (dynes/cm’) and the thickness of the annuar phase
yC (cm). It is also convenient to know the pressure gradient, but not essential.

There are several interesting features in these equations. The pressure gradient
a’P/dx appear only with a negative sign and under radicals. (If dP/dx >O, the
system breaks down as we would expect when invoking Darcy’s law.) The radicals
appear both in the arguments of natural logarithms and outside the argu
Neither the initial value for y, nor for dP/dx is prescribed. Flow
corresponds to vanishing or negative arguments of the natural logarithms.
choking would occur for a prescribed foam if the pressure gradient were t
in magnitude, the pipe radius were too narrow for the length L, or the initial
annulus thickness were too small. In particular, we note that these equatio
coupled, implicit differential-algebraic system, which appears to be non-&
typical data are as follows:

Case 1. This is an example of a normal flow.

R = 4.572 x IO’ cm

p = 8.14 x 10-l g/cm3

p=9.8x 10w2poise

b=6.06x 10-l

Qco = 1.1531 x lo6 cm3/s

40 BYRNE AND HINDMARSH

Q, = 2.035 x lo5 cm3/s

P, = 1.457 x 10’ dynes/cm2

L = 8.047 x lo6 cm.

Case 2. This is an example of a flow which choked. Parameters not listed have
the values specified in Case 1.

b=3.45x lo-’

Q,, = 1.7153 x lo6

Q, = 3.027 x 10’

P, = 1.378 x 10’

L = 3.2188 x 107.

Problem IO-Troesch’s Two Point Boundary Value Problem

It may seem unusual to see a two point boundary value problem listed as a stiff
ODE. We will use essentially the same technique as in [130], which is in some
sense tantamount to using time t as a continuation parameter to solve an elliptic
problem.

The problem to be solved is

O=$-lOsinh(l0u)

for O<x< 1 with

u(0) = 0

u(l)= 1.

We simply replace this problem with the related time-dependent problem

$=$- 10 sinh(lOu)

use the boundary conditions, and take an initial value

u(0, x) = 0 for O<x<l and u(O,l)=O. (4.49)

(4.46)

(4.47)

(4.48)

Again, we can use central differences to replace the second order spatial derivative
in (4.48). (See Problem 7.)

The use of a uniform grid for this problem is soon found to be unwise, because
the solution has a thin boundary layer near x = 1. Thus, a modest uniform grid mis-

STIFF ODE SOLVERS 1

ses this feature, and a sufficiently fine one is inefficient outside of the boundary
layer. Thus, foBlowing Sincovec and Madsen [13O], we pose a ~o~n~iforrn grid of
51 points, with 14 equal intervals on [0,0.4], 13 on [O.4,0.7], 12 on [O.7,0.9], and
1% on [0.9, 11. Alternatively, we expect that a good dynamic grid or moving finite
element algorithm would overcome this difficulty automatically.

Finally, we again point out that the last four examples are treated as partial dif-
ferential equations by the numerical method of lines. We have indeed carried out
the discretizations by hand and have used uniform mesh spacing in all but the last
case. We do not advocate hand discretizations in general and we do generally
recommend high quality method of lines codes. We have illustrated the last four
examples as we did simply to show the requirements imposed on high quality
software, as well as its use.

B. Code Usage and Computational Results

We now turn to some of the pragmatics associated with the problems described
in Subsection A of this section.

Problem l--Robertson’s Problem

The numerical solution of this problem illustrates the nearly logarithmic increase
in step size and the control of a neutrally stable problem. The step size did increase
dramatically. In fact, observed values ranged from about 4.5 x 10-l to 1.7 x 106.
The magnitude of the largest step size may be mildly surprising if we think in terms
of asymptotic (h -+ 0) numerica results.

The CPU times on a CRAY 1s for 10 output points was 0.06 s for both
and for MF= 22. In LSODE, the software package we used-A&F= 21--uses an
analytic, user supplied, dense Jacobian. On the other hand, A4F= 22 uses an inter-
nally generated, divided difference version of the dense Jacobian. A 2 in the first
digit of MF signifies the choice of BDF or stiff option. It not surpising that on 2%
small, not very complicated problem, the run times an results would be very
similar.

The graphical results in Fig. 4.1 show how y2 starts at 0, builds to about
3.6 x %Oe4 at about t = 2 x 10 -3 s and decays. This phenomenon would be, at best,
hard to capture by using absolute or relative error control alone. Note that y1
decays from B on about the same time scale as y3 builds from O to 1. Note that
steady state is not reached until t is in the millions. We used 100 data points
each component to generate Fig. 4.1. Note that good quality graphics an
reasonable choice for scaling the dependent variables help us to understand the
ChWliStlYy.

results shown in Fig. 4.1 were obtained by setting the relative error tolerance
(L) to 10~-6 and the absolute error tolerance (ATOL) to the vector
1710-6, %Q-“0, 10-6]T.

As a general rule of thumb, we like to set the relative error tolerance
bow many digits of accuracy are required. If the answer is r digits, then we set

42 BYRNE AND HINDMARSH

1.0 1.0

.9 .9

.9

.7

.5

.5

A A

.3 .3

2 2

.I .I

0.0 0.0 E-3 E-3 E-2 E-1 E+Z E+3 E+4 E+5 EfS E+,

FIG. 4.1. Robertson’s problem.

RTOL = 1.0 x lo-“+ ‘) or less. (In the Robertson example, fairly small RTOL helps
to control the stability problem.)

To set ATOL, we ask what the noise level is for each component of the solution.
The noise level is the size of the largest number that may be neglected for that com-
ponent. (In the national budget, lo6 appears to be small enough.)

The selection of the error tolerances is very important and yet fairly
straightforward. The penalties for loose tolerances are incorrect solutions and for
tight tolerances the penalties are high cost.

For RTOL = 10p3, ATOL = [10w3, 10p7, 10e31T the results are acceptable. The
Cray 1s CPU time is about 0.015 s for MF= 21 and 22.

Problem 2-The Field-Noyes Chemical Oscillator

The graphical results for this problem are shown in Fig. 4.2 on the time interval 0
to 610.0747. It illustrates several interesting features:

l disparate time scales
l a trigger notch, and
l the periodicity of the solution.

The time scales are evident, since the graph of y’ looks like 3 sharp upward directed
spikes, y3 has a sharp rise followed by a decay for about 90 s, and y2 has a gentle
rise and a decay for the remainder for the period. The sharp downward spike in y2
has been called the trigger notch. To resolve these features, we used 484 data points
for each component of the solutions. For these results, we used LSODE with
RTOL = ATOL = 10e6, and MF= 21. The problem features noted earlier are not
major obstacles.

The tolerances of 1O-6 may sound a bit academic. We should recall that LSODE
does not control global error directly. It controls local error. With only 10 output

STIFF ODE SOLVERS

)O

FIG. 4.2. The Field-Noyes chemical oscillator-logarithmic y axis

points, the CPU time was 0.25 s on a CRAY 15’. With tolerances of 10e3, t
times were lower, but the answers were highly inaccurate.

Problem ~-TWO Species Diurnal Kinetics

This problem illustrates several points:

* Sharp fronts can be accommodated with modern ODE software.
0 If negative results for the solution are smaller than ATOL and if these

results do not make the solution unstable, then we should not worry about them.
* This problem requires the setting of a maximum time step size, H

this case HMAX = 3.6 x 103 (1 hr).

In particular, the last point warrants the caveat that neither ODE software
packages nor their designers are omniscient. Intuition tells us that if the time step is
too large in this problem, the solver can go past a major event-sunrise or sunset-
and miss the feature we are after: the sharp buildup or decay of species.

To solve this problem, we used LSODE with ATQL = IO-“, RTOL = 10m6, and
Iwp;= 22. The output in the timed run was taken every 6 hr. This run took 0.84 s on
a CRAY IS. With MF = 21, the CPU time was 0.81 s for these error tolerances.
With RTQL = foe3 and ATOL= 10h7, CPU time was 0.29 s and 0.31 s for
M1;= 21 and 22, respectively. However, the results were not of as high a. q~a~~~~.
With few exceptions, higher quality numerical results take more CPU time t
“low quality results. We solved this problem with EPISODE, too. That code sb~~~~
run well on a problem of this type because the time-step length can be varied at
each step. We used a relative error control of the following type. The error in yi was
controlled relative to the quantity max(1 y’j, FLOOR’). For this particular problem,
we chose FLOOR = 10e4. Consequently, when lyi(3 FLOOR’, EPISODE tries to
keep the magnitude of the local error in y’ less than j y’l B EPS. (Here, EPS is the

44 BYRNE AND HINDMARSH

FIG. 4.3. Two species diurnal kinetics-truncated, logarithmic y axis.

user specified error tolerance.) When lyil <FLOOR’, EPISODE tries to keep the
magnitude of the local error in y’ less than EPS * FLOOR’. (See [77].)

For EPS = 10m6, FLOOR = 10e4, and MF= 21 the EPISODE run time was
0.55 CPU s and for MF = 22, 0.59 s. For this problem, EPISODE was faster than
LSODE for all tolerances that we tried.

The graphical results in Fig. 4.3 were obtained with 401 output points to resolve
the solution adequately. Note that y2 = [0,] looks like a staircase with a rise at
midday every day. In Fig. 4.3, y’ = [0] looks like a spike with its amplitude increas-
ing each day. A logarithmic scale is used for the vertical axis. We cut off the bottom
of the graph of y1 to illustrate other features, such as the increases in peak values of
yi and y2. The taxis is scaled in days with each day beginning at dawn, daylight
lasting a half day, and night lasting the remaining half day.

Problem 4-A Kidney Model

The graphical results (with 201 data points for each species) in Figs. 4.4a, b, and
c. Correspond to the initial values yi = 0.990268335, 0.99, 0.9, respectively. In the
graphical results, we used the observation that for t beyond 0.1, y’, y3, and y5 were
virtually equal. So, we did not plot y3 and y5. Furthermore, in Figs. 4.4b and C, we
show Iy4/. The figures illustrate the sensitivity of the solution to small changes in
the choices of yi. This is a vivid illustration that two point boundary value
problems cast as first order ODES can be challenging. However, the solution curves
are not overly exciting. By actual computation with a non-stiff solver and with a
stiff solver, we can compare the cost for these options with LSODE. In all three
cases, the cost for MF = 10 is at least twice as great as the cost for MF= 21 or 22.
In LSODE, MF= 10 causes LSODE to use Adams method with functional
iteration. Looking at the graphs probably does little to give insight to stiffness.

STIFF ODE SOLVERS 45

-2.0 1 j
-4.0 E

1 4.0~ i
!

- a.0
i I

-10.0 _--- --
t Y4

-12.0 / I
-14.0 f

--do 0.0 .2

bc
E+4t

E+3 F

,/--;
~.

E+Zr

FIG. 4.4. (a) A kidney model--y,5 = 0.990268835. (b) A kidney model--logarithmic y axis, yi = 0.99.
(c) A kidney model-logarithmic y axis, yi = 0.9.

However, the timing results indicate all 3 cases are stiff. We used RTBL = IQ-’ and
ATBE = 1W6 and 10 output points for the timed runs. The CPU times are given in

TABLE 4.4

CPU Time (in s) for Problem 4

MF

Y; 10 21 22

0.990268835 0.03 1 0.012 0.012
0.99 * 0.020 0.021
0.9 * 0.a55 0.054

46 BYRNE AND HINDMARSH

Problem 5-A Laser Oscillator Model

This is a challenging problem. (See Fig. 4.5a for a 901 point plot for each 4 and
n.) It is initially stiff and then has a damped oscillatory structure with, period of
about 7000 ns. Perhaps the earlier remarks about omniscience ought to be recalled.
In any case, intuition suggests that an automatic method switching code such as
LSODA would do well on a problem such as this. It does not because it chose to
continue with the BDF method during the highly oscillatory part of the solution. In
fact, the LSODA performance is comparable to a straight application of LSODE
with MF= 21. What works most cheaply? Starting with MF=21 (BDF, analytic
Jacobian) and switching to MI;= 10 (Adams method, functional iteration) is the
cheapest in CPU time. We made the switch at t = 4.9 x lo5 because that correspon-
ded to several times the fastest time constant. The catch is that either quite a little
analysis to observe this is required or some numerical computation must be done.
Frankly, neither may be realistic when results are needed quickly, staffing is short,
or budgets are small. It is far more likely that the user would solve the problem
with a straight application of LSODE.

A comparison of CPU times for 87 output point is given in Table 4.5 for several
methods we tried. The results in Table 4.5 give CPU times for the various choices of
method. RTOL = 10e6, ATOL = [10h9, 10-6]T.

TABLE 4.5

Run Times for Problem 5

Code MF

LSODE 21
LSODE 21-+ 10
LSODA (JT= 1)

CPU (s)

0.63
0.47
0.74

Turning back to Fig. 4Sa, the amplitudes of the oscillations in 4 (plotted on a
logarithmic scale) are not represented by only 901 output points. However, the key
features of oscillation and damping are captured. Figure 4.5b gives somewhat more
resolution (401 data points on a shorter t interval) and depicts less variation in
peak values of 4.

Problem G-Burgers’ Equation

Reasons for including this example were noted earlier. Another is to illustrate the
two solution techniques for this mildly stiff problem. Elsewhere we have worked
with the traveling square pulse version of this problem [19]. We again note that
the cell Peclet number must be fairly small for the numerical method of lines to
work well on convective problems. Finally, in applying both the finite element and

STIFF ODE SOLVERS 49

FIG. 4.5. Laser oscillator models.

finite difference strategies, we use the banded version of the solver. The run times
for 50 interior grid points and 4 output times are given in

TABLE 4.6

Solver MF Method CPU (s)

LSODE
LSODI

14 Finite differences 0.032
14 Simplified Galerkin 0.030

The MF = 14 setting is for implicit Adams formulas with banded, analytic user sup-
plied Jacobian. We again used LSODE, with RTOL = 0, ATOL = IO- 3. Similar
run times were obtained for other banded options.

The graphical results are given in Figs. 4.6a and b. The solutions for t = 0, I, and
2 are shown in Fig. 4.6. When t = 3, the solution fits the upper-right corner of the
U-X coordinate system. To the eye, graphical results for the simplified aierkin
(Fig. 4.6b) and finite difference methods (Fig. 4.6a) were identical. Moreover, results
with 50 and 100 interior points were identical to the eye.

Note that we used MF= 14, implicit Adams formula and the analytic, banded
Jacobian in the modified Newton iteration. Run times for BDF were comparable.
This is the only test problem in the set for which we believe this to be true. Again,
we refer to this as a mildly stiff problem, because f~~~tio~a~ iteration would be
expensive.

Problem ‘T--Two Species Diffusion-Diurnal Kinetics: One

This problem features both diffusion and kinetics, Consequently it is reasonable
to include it in a Froblem set of this type. Moreover, as we mentioned earlier, it is
similar to some early large scale method of lanes problems. There is also a

581/70/l-4

48 BYRNE AND HINDMARSH

”

1.0 p,, I, /, I.,

.7 :

r- I
a

.9
t=*

.8 \

4

” y

t=,

.2 \

‘,\ .5 1 \

3
.b

.3
7

t=o

‘\\,,&j
\

o.oc- I,,.li#,i,L,,,
0.0 .I .2 .3 .4 .5 .6 .7 .a .9 1.0

FIG. 4.6. Burgers’ equation: (a) finite differences, 102 grid points--u vs. x at various t; (b) simplified
Galerkin procedure, 102 grid points--u vs. x at various t.

pedagogical reason for including this problem. It is just a one-dimensional mixing
version of Problem 3.

There are some other points, too. The analytic Jacobian version is about twice as
fast as the finite difference version.

For 10 output times, RTOL = lo-‘, ATOL = 10-l, and 50 interior grid points,
the run time with LSODE is 0.57 s with MF= 24. Figures 4.7a and b give the
results for c1 and c*, respectively, at various values of t (hr).

Problem ~-TWO Species Diffusion-Diurnal Kinetics: Two Dimensional

The lessons learned from one-dimensional problems can help with two-dimen-
sional problems. However, there are aspects of the game that are quite different.
These include storage requirements for realistic resolution, selection of linear
algebraic methods, and, of course, speed of solution. Pedagogically, it makes sense
to add another degree of complexity to Problem 7.

In keeping with these remarks we break out GEARBI, modified for two-dimen-
sional differencing problems. We give a brief comparison of GEARBI with LSODE.
Some data are given in

TABLE 4.8

Code A4F ATOL RTOL CPU (s)

LSODE 24 10-l 10-3 10.4
LSODE 25 IO-’ 10-3 29.6
GEARBI - 10-l IO-’ 11.6

Graphical results are given in Figs. 4.8a-m. In these figures, dx = 20/19. For tighter

STIFF ODE SOLVERS

a

4.00e+11, ,,I ,,,, 1118,1 ,,I,, ,,!>.,~LUd
30 32 34 36 38 40 42 44 46 48 50

z

FIG. 4.7. l’wo species diffusion, diurnal kinetics, one-dimensional: (a) iogdrithmic C! axis, / in h. (.’

vs. 2 at carious I: (b) logarithmic ? axis. c2 vs. ; at various i.

error tolerances, GEARBI is faster than LSODE. These data are for a 20 x 20 grid
and 12 output times.

We actually solved this problem in three different ways. The first way was picked
for such practical reasons as available software and severe constraints on the
required turnaround time for the parameter study. The nonlinear implicit nature of
the problem precluded the direct use of LSODI. The package DASSL was nor
initially at hand, so we used a combination of Newton’s method and LSODE as
follows:

Et+ x=8AY

I ,-

c’

IL----d
30 32 34 36 36 40 42 44 46 48 50

30 32 34 36 36 40 42 44 46 46 50
z

2.00e + 11 Ld-h,..~IdL-Il
30 32 34 36 36 40 42 $4 46 46 50

6

2.00e+ll~~""YU~"'~""'~"'l~'lY~"'1~'1'~Y'~II'~
30 32 34 36 36 40 42 44 46 46 50

z

30 32 34 36 36 40 42 44 46 46 50

z

FIG. 4.8. Two species diffusion, diurnal kinetics, two-dimensional: (a) logarithmic c’ axis, c’ vs. z at
various x, t = 0 h; (b) logarithmic c2 axis, cz vs. z at various x, t = 0 h; (c) logarithmic c1 axis, c1 vs. z at
various x, t = 1 h; (d) logarithmic c2 axis, c2 vs. z for various x, t = 1 h; (e) logarithmic c1 axis, c’ vs. z for
various x, t = 3 h; (f) logarithmic cz axis, c2 vs. z for various x, I = 3 h; (g) logarithmic c’ axis, c’ vs. z for
various x, t = 6 h; (h) logarithmic c2 axis, c2 vs. z for various x, t = 6 h; (i) logarithmic c’ axis, cl vs. z for
various x, t = 9 h; (j) logarithmic cz axis, c* vs. z for various x, t = 9 h; (k) logarithmic c2 axis, c2 vs. z for
various x, t = 12 h; (1) logarithmic c2 axis, c2 vs. z for various x, t = 18 h; (m) logarithmic cz axis, m* vs. z
for various x, I = 24 h.

I E+7--‘,’ “” ‘Id.Ju,,’ “““” I-’
30 32 34 36 38 40 42 44 46 46 50

z

--L. ,,/,, u,,, ,L”.,,,d ,,,,,,,,,,
30 $-iii 36 36 40 42 44 46 46 50

1

2.00*+4 ,,,, 1 ILudvL_LLIL, ,,,, , ,,,lu,,b, ,I
30 32 34 30 38 40 42 44 46 46 50

z

2.oof?+11L,,~ & ,I,I/,I# I,, d,,iLLLi*L-
30 32 34 36 36 40 42 44 46 40 50

z

1.20e+12-r--r-"7vv--m77T

E+

STIFF ODE SOLVERS 54

2.00e+llL, j2,,. ,,d,,., ,, ,,,IL,-,LL
30 32 34 36 30 40 42 44 46 48 50

Et

FIG. 4.8-Continued.

52

2.00e+11 I
30 32 34 36 36 40 42 44 46 40

BYRNE AND HINDMARSH

FIG. G-Continued.

* The spatial position x and pressure P are known values. (Initially, x = 0,
P= PO and estimates for y, and dP/dx were also made.) Call the integrator, which
only uses or requires discrete values of P, dP/dx, and yc.

l In the function subroutine called by LSODE, we treated (4.44) and (4.45)
as two nonlinear equations in y, and u = (-dP/dx) “’ These equations were solved .
using Newton’s method.

l The value of dP/dx = -u* was passed from the function routine to the
integrator, which in turn computed P at the next value of x, and so on. (The most
recent available values of y, and u were used to start Newton’s method.)

l When output was requested at x=xout, the value of P(xout) was made
avaiable to the main program by the integrator. So Newton’s method was used to
find u(xout) (and hence dP/dx) and yJxout). It was useful, but hardly necessary, to
have dP/dx as an output parameter.

In the second method of solution, we just used DASSL in the most obvious ways.
(That is, we used the DASSL examples and preamble for the problem setup and
coding.) The initial values and slopes were computed as before. Table 4.9 has CPU
times for the normal flow case.

TABLE 4.9

IBM 3033 AP Cray 1s

Newton/LSODE 0.04 *
DASSL (divided difference Jacobian) 0.03 0.027
DASSL (user-supplied Jacobian) 0.04 0.027
LSODI * 0.024

The IBM 3033 AP runs were with a Newton method taken from a continuation

STIFF ODE SOLVERS 53

package. The Cray 1S runs used DZERX, an IMSL nonlinear system

. rngs for the two machines were made in as nearly COmparable Ways as
owever, the IBM runs were made in an interactive environments and

are rather rough. There are some other algorithmic differences, too.
believe these two computers are generally comparable in speed. Ah runs are for
Case 1 only. Tt is clear that the computation of the starting values has sig~~~~a~t
impact 0~ the timing. Finally, the simplest codes to irn~l~rne~t were those using
DASSL.

There is a third way to solve this problem. y way of a sketch it involves the
foohlowin

a ecognize that the logarithmic term is the same i
a Eliminate the logarithmic term to get a uadratic equation in

h; = (- dP/d.x)?
e Rearrange the system to get:

+ n explicit ODE for P.

f An algebraic equation in P and y,, with care taken to pick t
root of the quadratic equation.

0 Solve the resulting system with LSODL

It turns out that computationally this is faster than the other two me
Now we can look at some pragmatics. It is far simpler to use DA

‘s staffing costs, it is surely less expensive to apply
erhaps. The real life setting for the solution of t roblem left little

r experimentation and importing of codes. The p
clever ways to solve problems. Occasionally, pragmatics pm&de their discovery or

With some of today’s software, the risk is kept low.
SSL CPU time was 0.075 s with RTOL = ATOL = 10M6,

was 0.069 s. Both include the cost of finding initial guesses,
IN to find starting values. We can also get a feeling
1s and an IBM 3033 AP.

The graphical results for Case 1 (normal flow) are given in Fig. 4.9a, while t
for choked flow are given in Fig. 4.9b. The normal flow lution is fairly linear.
dramatic change in the pressure gradient in the choked case is perhaps not sur-
prising. e used 101 and 69 data points to generate Figs. 4.9a and b, res~e~t~~e~~.

One cure that this problem has that is in no other pr
we expected an abnormal termination of some kind for

). In the original runs, we did not know when to expect c
for non-positive arguments of the logarithm or error

or. According to the method used, we observed both types

Prab2em l&Troesch’s Two Point Boundary Value Problem

The graphical results for this problem are given in Figs. 4.10a and b. The runs
were made ES0 E and the banded Jacobian options for both t

d

54 BYRNE AND HINDMARSH

FIG. 4.9. Two-phase plug flow problem: (a) Normal flow; (b) choking.

(MF= 24) and divided difference (MF= 25) Jacobians. The error tolerances were
set with RTOL =0 and ATOL = 10-3. For 50 interior grid points, the run times
were 0.06 and 0.07 s for MF= 24 and 2.5, respectively.

The graphs show how the initial guess relaxes. The graphical solutions for t = 0.1
and t = 1 overlapped. We used 51 and 24 points to generate each curve in
Figs. 4.10a and b, respectively.

5. RELATED DEVELOPMENTS

There are many ongoing or recent projects of potential interest here. For exam-
ple, the active work on Krylov subspace methods could mean that the BDF solvers
would need but minimal storage for certain types of PDEs. At this time it is not

FIG. 4.10. Troesch’s two-point boundary value problem.

ST’IFF ODE SOLVERS 55

quite clear to which classes of PDEs this work will be applicable [IL 301. other
storage reduction methods for MOL solution of PDEs have also been investigated.
These include several adaptations of Newton’s method- -Newton/successive over
relaxation (SOR), SOR/Newton, using only diagonal blocks of the Jacobian and so
on. Again, the extent of the applicability of these methods is not well underst::od
[23]. In the broadest sense, the moving finite element methods and dynamic grid
methods could also be regarded as storage reduction methods. So far, most iest
results are available for only one or two PDEs in one spatial dimension. The worth
of these techniques will be fully realized for reasonably sized systems of PDEs in
one and two spatial dimensions or problems in three spatial dimensions.

It seems likely to us that these methods will be effective on reactive, diffusive,
convective flows. If this is to be, the cell Pcclet numbers will be kept low by the
adaptive technique.

We have alluded to automatic method switching elsewhere in this paper. The
idea is for the code to pick a stiff or a non-stiff ODE method automatically and
dynamically. In this way, the more efficient method is automatically applied to each
phase of a problem. So far, efforts along these lines have been few. They have.
however, met with some success [110, 121, 1241. The extent of the consequences of
such a code is not clear. However, there is clear potential market for an automatic
method switching code. because the user does not need to choose a method.

The trend toward scientific engineering workstations will impact ODE solvers.
We can cxpcct to set an even stronger trend toward non-Fortran front ends and
graphical output in this setting. It is likely that the smaller problems will be run on
the workstation and the larger ones uploaded to a large scale computer or super-
computer. In this supercomputer setting, the workstation would serve as a pm- and
post processor.

The idea of having a good. inexpensive global error estimate has drawn a fa.ir
amount of attention. In most cases, this amounts to a clever interpretation or
solution of a fairly simple differential equation (variational equation), lt appears
that most of these estimates are based on an asymptotic analysis (jr -+ 0) and are
currently fairly crude. Also, there is not much numerical evidence to show that the
global techniques are superior to the current local estimates. However, globa!.
estimates may prove to be practical as they stand or as they cvolvc in the furture.
Some work in this area for stiff ODES includes: Stetter [1331, Dew and West [42],
Robinson and Prothero [1143, Prothero [1123, Dahlquist [36, 373, and Shampine
[1221. The value in computing global error is this. Global error is what the user
really wants to control. One issue is whether the global error estimate wi]j bc simply
supplied to the user or whether the estimate will be used to control order and step
size selection. Another is the need to carry a differential equation or its reduced cost
solution for each ODE in the system. Finally, there is some disagreement regarding
the required quality of this estimate.

One drawback of using a variable step BDF lies in the retention of the matrix

P = [I - &f,]

56 BMlNE AND HINDMARSH

in the corrector phase of the code (see 2.12)). The parameter & changes with h.
Consequently, the matrix P gets out of date, then needs to be re-evaluated and fac-
tored. The basic idea is this. If the coefficient j3, can be held fixed, then the matrix P
does not need to be recomputed and factored as often as when Do varies freely. The
cost of recomputing and factoring can be high. The scheme becomes a little more
apparent if the system (2.11) is multiplied by b = l/p0 so that bT and hf, can, in
some sense, be treated separately. By using interpolation, b can remain fixed when h
changes. The consequence is that a fixed leading coefficient method can be more
stable than a fixed step-interpolate strategy (GEAR, LSODE) and less expensive,
and a little less stable than a variable step method (EPISODE). Indeed, Petzold
used the fixed leading coefficient approach in DASSL [109]. The pioneering work
in this area was done by Jackson and Sacks-Davis [SS]. The idea is promising
since it works well in DASSL and performed well in the Jackson and Sacks-Davis
prototypical revision of EPISODE.

6. SUMMARY

We have discussed the notion of stiffness, where it arises, and how to
pragmatically test for it in Section 1. There, we also looked at an example of a
neutrally (conditionally) stable system of ODES, looked at eigenvalues of both
ODES and spatially discretized PDEs, particularly the heat equation. We then tur-
ned to the various structures of systems of ODES and talked about the origins of
the structures. With this discussion, we associated the importance of the structure of
systems of ODES and how we might take advantage of Ihem. Finally, we discussed
some of the features of the solutions of systems of ODES and how high quality
software must handle them.

In Section 2, we presented some of the underlying methods for solving stiff
ODES. These included BDF, Runge-Kutta, and other methods. In the category of
other methods were: averaging, extrapolation, one-leg, multiderivative, partitioning,
composite, block, fitting, collocation, and blended methods. Along the way, we also
discussed error and step size control.

In Section 3, we gave a brief historical perspective of the development of some
stiff ODE software. Then, we turned to a discussion of the readily available stiff
ODE solvers. (Much of the highest quality software is available at low or no cost.
See the Appendix for sources of software.)

Section 4 is where we gave a number of examples. One word of caution. These
examples are not very large or time consuming, in general. For example, see
[31, 231 for problems that are larger in scale. We mention this because problem
size can and does bias test results dramatically. Nonetheless, we believe these exam-
ples are fairly representative with respect to many features. We did not, however,
give examples using zeros of functions (g-stops) or problems involving extensive
constraints. These types of problems do occur and with some frequency [138].

STIFF ODE SOLVERS 57

We believe that this review will be helpful to line scientists and engineers face
with the need to solve a large number of problems quickly and efficiently. Con-
sequently, it could be (and has been) used in the classroom or as a basis for a
workshop. We also believe that this review indicates some of the more ~rorn~si~~
areas of research and development for the solution of stiff ODES.

Finally, managers of scientific computing units can use this pa er ~CX an overview
of the field.

APPENDIX: How TO OBTAIN STIFF ODE CODES

Here we have focused on ODE software that is readily avaiable. We simply hst
known sources for such software. The ODE solvers in the rational Energy
Software Center (NESC) are known by name and number. (Source: National
Energy Software Center, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, I& 40439.)

Code Catalog number

DASSL 9918
EPISODE 675
EPISODEB 105
EPISODEIB Not issued at this time
FORSIM 514
GEARBI Not issued at this time
ESQDE 592
LSODI 9939
LSODA 9937
LSODAR 9936
ESODES 9938
LSOIBT 9832
SLATEC Library (DEBDF) 820
STFODE/COLODE 652
TORANAGA Not issued at this time

We strongly recommend the following. ff you want to obtain a code from NESC,
contact your m-house NESC representative. If you do not have an NESC represen-
tative, telephone the NESC to determine prices, procedures, and timing. Note that
the SLATEC library can be obtained directly from MESC.

The IMSL library is often available on the in-house mainframe computer.
recomme hat you contact your in-house user representative, if you are intere
in using $6, software. For further information about this library, write or
telephone IMSL, Sixth Floor, NBC Building, 7500 Bellaire ouston,

85.
Hibrary may be on your in-house mainframe. Elements may also be
ou for use on a personal computer. Again, see your in-

58 BYRNE AND HINDMARSH

port staff. You may obtain further information about the NAG library from NAG
Inc., 1131 Warren Avenue, Downers Grove, IL. 60515 or NAG Central Office,
Maylield House, 256 Banbury Road, Oxford OX2 7DZ, United Kingdom.

It is possible that some experimental codes are available from their authors for
trial use and beta testing. Some of the papers cited include statements of
availability.

ACKNOWLEDGMENTS

We gratefully acknowledge Dr. Raymond C. Y. Chin, Lawrence Livermore National Laboratory, for
his patient encouragement and suggestion that we write such a review paper. We also thank the
management at Lawrence Livermore National Laboratory, especially Dr. Nora Smiriga, Computing and
Mathematics Research Division Leader, for making facilities available to us. It was there that we
sketched and drafted the key elements of this paper and did most of our computing. The constructive
criticism of Drs. Linda Petzold and Scott Weidman and Professor L.E. Striven were very helpful.
Finally, we thank the management at Exxon Research and Engineering Company for making it possible
for us to reunite to write this paper and for its processing.

REFERENCES

1. R. ALEXANDER, SIAM J. Numer. Anal. 14, 1006 (1977).
2. P. ALFELD AND J. D. LAMBERT, Math. Comput. 31, 922 (1977).
3. G. D. ANDRIA, G. D. BYRNE, AND D. R. HILL, BIT 13, 131 (1973).
4. T. S. AXELROD, P. F. DUBOIS, R. B. HICKMAN, A. C. HINDMARSH, AND J. F. PAINTER, Lawrence

Livermore Laboratory Report No. UCID-30190, January 1983 (unpublished).
5. G. BADER AND P. DEUFLJXARD, Numer. Math. 41, 373 (1983).
6. E.R. BENTON AND G. W. PLATZMAN, Quart. Appl. Math. 30, 195 (1972).
7. M. BERZINS, P. M. DEW, AND R. M. FURZELAND, “Software for Time-Dependent Problems,” PDE

Software, Modules, Interfaces, and Systems,” edited by B. Engquist and T. Smedsaas (North-
Holland, Amsterdam, 1984) p. 309.

8. T. A. BICKART AND Z. PICEL, BIT 13, 272 (1973).
9. R. B. BIRD, W. E. STEWART, AND E. N. LIGHTFOOT, Transport Phenomena (Wiley, New York,

1960).
10. A. BJBRCK, in “Some Methods for Separating Stiff Components in Initial Value Problems,”

Proceedings of Dundee Numerical Analysis Conference 1983 (Springer-Verlag, Berlin, to appear).
11. R. K. BRAYTON, F. G. GUSTAVSON, AND H. D. HACHTEL, Proc. IEEE, 60, 98 (1972).
12. P. N. BROWN AND A. C. HINDMARSH, SIAM J. Numer. Anal. 23,

Num.BG72a7 ETBT0.8667 0 0 1 a Tj0 Tr 13.16599B81NGI152 C. K. 73, C86

STIFF ODE SOLVERS 59

20. G. D. BYRNE AND A. C. HINDMARSH, ACM Trans. Math. Software 1, 71 11975:.
21. G. D. BYRNE AND A. C. HINDMARSH, Lawrence Livermore Laboratory Report No. UCID-30?32,

April 30, 1976 (unpublished).
22. G. D. BYRNE AND A. C. HINDMARSH, Numerical Solution of Stiff Ordinary Differential Equations,

AIChE Today Series, American Institute of Chemical Engineers, New York, 1977 (unpublished).
23. G. D. BYRNE AND A. C. HINDMARSH, Appl. Numer. Math. I, 29 (1985).
24. G. D. BYRNE AND W. S. Ho, Exxon Research and Engineering Company Report

NO. CTSD.2DI.83, May 1983 (unpublished).
25. G. D. BYRN’E AND R. .I. LAMBERT, J. Assoc. Comput. Mach. 13, 114 (1966).
26. M. B. CARVER, Comput. Phys. Comm. 17, 239 (1979).
27. .I. R. CASH, Numer. Math. 36, 253 (1981).
28. J. R, CASH, Appl. Numer. Math. 1, 195 (1985).
29. J. R. CASH AND A. SINGHAL, IMA J. Numer. Anal. 2, 211 (1982).
30. T. F. GHAN AND K. R. JACKSON, SIAM J. Sci. Stat. Comput. 7, 378 (1986).
31. J. S. CHANG, A. C. HINDMARSH, AND N. K. MADSEN, “Simulation of Chemical Kinetics Transport

in the Stratosphere,” Stiff Diff erential Systems; edited by R. A. Willoughby (Plenum, New York,
1974), p. 5!.

32. R. C. Y. CHIN, 6. W. HESTROM, AND K. E. KARLSSON, Math. Comput. 33, 647 (1979).
33. A. R. CURTIS, Solution of Large, Stiff Initial Value Problems-The state of the Art,” Numericnl

Software-Needs and Availabiiity, edited by D. A. W. Jacobs (Academic Press, London, 1978);
p. 251.

34. C. F. CURTISS AND 9. 0. HIRSCHFELDER, Proc. Nat. Acad. SC;. U.S.A. 38, 235 (1952).
35. H. SETTER, “Global Error Estimation in ODE-Solvers,” in Numerical Analysis, Proceedings q/” the

7th Biennial Conference Held at Dundee, Scotland, 1977. Lecture Notes in Mathematics, Vol. 630,
edited by 6. A. Watson (Springer-Verlag, Berlin, 1978), p. 179.

36. G. r)AHLQLXT, “On the Control of Global Error in Stiff Initial Vaiue Problems,” in Numerica!
Analysis, Proceedings of the 9th Biennial Conference Held at Dundee, Scoflund, IE81. Lecture Motes
in It4athematics, Vol. 912, edited by G. A. Watson (Springer-Verlag, Berlin, 1982), p, 38.

37. 6. DAHLQUIST, “On the Local and Global Errors of One-Leg Methods,” Dept. of Numerical
Analysis and Computing Science, Royal Institute of Technology, Stockholm, Report No. TRITA-
WA-8110, 1981 (unpublished).

38. G. DAHLQUIST, SIAM .I. Numer. Anal. 20, 1130 (1983).
39. P. DEUFLHARD, G. BADER, AND U. NOWAK, “LARKIN-A Software Package for the Numerical

Simulation of Large Systems Arising in Chemical Reaction Kinetics,” Modelling qf Chemical Reac-
fion Systems, edited by K. H. Ebert et at. (Springer-Veriag, Ber!in, 19&l), p. 38.

40. P. DEUFLHARD, SIAM Rev. 27, 505 (1985).
41. P. DEUFLHARD, E. HAIRER, AND J. ZUGCK, Institiit fiir Angewandte Mathematik, LJniversit&

Heidelberg Preprint No. 318, June 1985 (unpublished).
42. P. M. DEW AND M. R. WEST, BIT 19, 135 (1979).
43. a. P. DICKINSON AND R. J. GELINAS, J. Comput. Phys.21, 123 (1976).
44. J. DOUGLAS, JR., “The Numerical Solution of a Composition Model in Petroleum

Engineering,” Numerical Solution of Field Problems in Continuum Physics, SIAM AMS Proceedings,
Vol. II, edited by 6. Birkhoff and R. S. Varga (Amer. Math. Sot., Providence, R.I., 1970), p. 54.

45. S. C. EISENSTAT, M. C. GURSK~, M. H. SCHULTZ, AND A. H. SHERMAN, Vale University Computer
Sciences Dept. Report No. 114, 1977 (unpublished).

46. S. C. EISENSTAT, M. C. GURSKY, M. H. SCHULTZ, AND A. H. SEERMAN, int. J, ~~mer..~ethods
Eng. 18, 1145 (1982).

47. E. EITELBERG, “Modular Simulation of Large Stiff Systems,” Progress in Modelling and Simulation,
edited by F. E. Cellier, (Academic Press, New York, 1982), p. 281.

48. W. M. ENRIFHT, SiAM .I. Numer. Anal. II, 321 (1974).
49. W. H. ENRIGHT, T. E. HULL, AND B. LINDBERG, BIT 15, 10 (1975).
50. W. H. ENRIGET AND T. E. HULL, “Comparing Numerica! Methods for the Solution of Stiff Systems

60 BYRNE AND HINDMARSH

of ODES Arising in Chemistry,” Numerical Methods for Differential Systems, edited by L. Lapidus
and W. E. Schiesser (Academic Press, New York, 1976), p. 45.

51. W. H. ENRIGHT AND M. S. KAMEL, ACM Trans. Math. Software 5, 314 (1979).
52. R. J. FIELD AND R. M. NOUFS, J. Chem. Phys. 60, 1877 (1974).
53. P. W. GAFFNEY, ACM Trans. Math. Software 10, 58 (1984).
54. C. W. GEAR, “The Automatic Integration of Stiff Ordinary Differential Equations,” in Proceedings

of the 1968 IFIP Congress, Edinburgh, Scotland, edited by A. J, H. Morrel (North-Holland, Amster-
dam, 1968) p. 187.

55. C. W. GEAR, Numerical Initial Value Problems in Ordinary D$ferential Equations (Prentice-Ha]l,
Englewood Cliffs, N.J., 1971).

56. C. W. GEAR, IEEE Trans. Circuit Theory 18, 89 (1971).
57. C. W. GEAR, ACM Trans. Math. Software 6, 263 (1980).
58. C. W. GEAR AND L. R. PETZOLD, SIAM J. Numer. Anal. 21, 716 (1984).
59. R. J. GELINAS, Lawrence Livermore Laboratory Report No. UCRL-75373, January 1974

(unpublished).
60. I. GLADWELL, ACM Trans. Math. Software 5, 386 (1979).
61. B. S. GOTTFRIED, Sot. Pet. Eng. J. 5, 196 (1965).
62. B. A. GOTTWALD AND G. WANNER, Computing 26, 355 (1981).
63. G. K. GUPTA, R. SACKS-DAVIS, AND P. E. TISCHER, ACM Computing Survqvs 17, 5 (1985).
64. G. D. HACHTEL, R. K. BRAYTON, AND F. G. G~ISTAVSON, IEEE Trans. Circuit Theory 18, 101

(1971).
65. E. HAIRER AND G. WANNER, Computing 11, 287 (1973).
66. P. HENRICI, Discrete Variable Methods in Ordinary Dfferential Equations (Wiley, New York, 1962).
67. A. C. HINDMARSH, Lawrence Livermore Laboratory Report No. UCID-30001, Rev. 3, December

1974 (unpublished).
68. A. C. HINDMARSH, Lawrence Livermore Laboratory Report No. UCID-30130, February 1976

(unpublished).
69. A. C. HINDMARSH, Lawrence Livermore Laboratory Report No. UCRL-78129, April 1976

(unpublished).
70. A. C. HINDMARSH, Lawrence Livermore Laboratory Report No. UCID-30149, December 1976

(unpublished).
71, A. C. HINDMARSH, Lawrence Livermore Laboratory Report No. UCID-30059, Rev. 2, June 1977

(unpublished).
72. A. C. HINDMARSH, Lawrence Livermore Laboratory Report No. UCID-17954, October 1978

(unpublished),
73. A. C. HINDMARSH, “A Collection of Software for Ordinary Differential Equations,” in American

Nuclear Society Proceedings of the Topical Meeting on Computational Methods in Nuclear
Engineering, Vol. 2 (American Nuclear Society Virginia Section, Lynchburg, VA, April 1979),
p. 8-1.

14. A. C. HINDMARSH, ACM SIGNUM Newsletter 15, No. 4, 10 (1980).
75. A. C. HINDMARSH, “ODE Solvers for Use with the Method of Lines,” Advances in Computer

Methods for Partial Differential Equations-IV, edited by R. Vichnevetsky and R. S. Stepleman,
(IMACS, Dept. of Computer Science, Rutgers University, New Brunswick, N.J., 1981), p. 312.

76. A. C. HINDMARSH, “ODEPACK, a Systematized Collection of ODE Solvers,” Scientific Computing,
edited by R. S. Stepleman et al., (North-Holland, Amsterdam, 1983), p. 55.

77. A. C. HINDMARSH AND G. D. BYRNE, “Applications of EPISODE: An Experimental Package for
the Integration of Systems of Ordinary Differential Equations,” Numerical Methods for Differential
Systems, edited by L. Lapidus and W. E. Schiesser, (Academic Press, New York, 1976), p. 147.

78. A. C. HINDMARSH AND G. D. BYRNE, Lawrence Livermore Labcratory Report No. UCID-30134,
May 1976 (unpublished).

79. A. C. HINDMARSH AND G. D. BYRNE, Lawrence Livermore Laboratory Report No. UCID-30112,
Rev. 1, April 1977 (unpublished).

STIFF ODE SOLVERS $1

80. E. HOFER, SIAM J. Numer. Anal 13, 645 (1976).
81. T. E. HULL, W. H. ENRIGHT, AND K. R. JACKSON, Department of Computer Science, Univ. of

Toronto, Report No. TR No. 100, October 1976 (unpublished).
82. B. L. HULME, Math. Compuf. 26, 881 (1972).
83. B. L. HULL AND S. L. QANIEL, Sandia Laboratories Report No. SAND74-0380, December 1974

(unpublished).
84. B. L. HULME AND S. L. DANIEL, Sandia Laboratories Report No. SAND74-0381, December 1974

(unpublished).
85. IMSE Library Reference Manual 1, IMSL, Houston, 1982.
86. K. R. JACKSON AND R. SACKS-DAVIS, ACM Trans. Mafh. Software 6. 295 (1980).
87. P. KAPS AND P. RENTROP, Numer. Math. 33, 55 (1979).
88. P. KAPS AND 6. WANNER, Numer. Math. 38, 279 (1981).
89. P. KAPS, S. W. If. POON, AND T. D. Bur, Computing 34, 17 (1985).
90. R. W. KLOPFENSTEIN, RCA Rev. 32, 447 (1971).
91. R. W. KLOPFZNSTEIN, RCA David Sarnoff Laboratory, private communication on IMPEQ (1974).
92. R. W. KLOPFENSTEIN AND C. B. DAVIS, “PECE Algorithms for the Solution of Stiff Systems of

Ordinary Differential Equations,” Math. Comput. 25, 457 (1971).
93. F. T. KROCH. TRW Report No. 99900-6573-ROOO, 1968 (unpublished).
94. F. T. KROGH AND K. STEWART, ACM Trans. Math. Software 10, 45 (1984).
95. J. D. LAMBERT AND S. T. SIGURDSSON, SIAM J Numer. Anal. 9, 715 (1972).
96. G. K. LEAF AND M. MINKOFF, “DISPLZ: A Software Package for Solving One and Two

Spatially Dimonsioned Convection-Diffusion Kinetics Nonlinear PDEs,” Advances in Computer
Methods for Partial Differential Equations-V, edited by R. Vichnevetsky and R. S. Stepleman
(IMACS, Dept. of Computer Science, Rutgers University, New Brunswick, New Iersey, 1984).
p. 429.

97. C. K. LEAF AND M. MINKOFF, Argonne National Laboratory Report No. AWE-84-56, September
1984 (unpublished).

98. B. LINDBERG, “A Stiff System Package Based on the Implicit Midpoint Method,” St$f D$ferentiui
Systenzs, edited by R. A. Willoughby (Plenum, New York, I974), p. 201.

99. W. LINIGER, “High-Order A-Stable Averaging Algorithms for Stiff Differential Systems,” hrumerical
Methods .for D$fwmial Systems, edited by L. Lapidus and W. E. Schiesser (Academic Press, New
Y’ork, 1976), p. 1.

100. W. LIN~GER AND R. A. WILLOUGHBY, SIAM J. Numer. Anal. I, 41 (1970).
101. N. K. MADSEN AND R. F. SINCOVEC, “The Numerical Method of Lines for the Solution of Non-

linear Partial Differential Equations,” Computational Methods in Nonlinear Mechanics, edited by
J. T. Oden, et ai. (Texas Institute for Computational Mechanics, e’niv. of Texas at Austin, ?974),
p. 371.

102. N. K. MADSEN ANU R. F. SINCOVEC, ACM Trans. Math. SoJtwure 5, 326 (1979).
103. D. B. MORRIS, A. C. HINDMARSH, AND P. F. DUBOIS, Lawrence Livermore Laboratory Report

No. UCID-30119, Rev. 1, December 1977 (unpublished j.
104. NAG L~BKARY, Mark 9, Oxford, 1982.
105. S. P. N~RSETT AND A. WOLFBRANDT, Numer. Math. 32, 1 (1979).
106. D. W. PEACEMAN, Fundamentals of Reservoir Simulation (E?sevier, New York, 1977).
107. A. PE~ros AND R. W. KLOPFENSTEIN, Math. Comp6619 81445(76e72o7BT0.8461 0 0 1 81o Tm3 T60.1411 Tc 0.2173 1aNP1523 Tr /F� Tf6oir) 1 81o Tm3 T60.10 1.0309 Tc 0.0c 0.1974r /F0 6.96 Tf1SN8�M2S7i.8667 0 0 1 53.46191 0 7 . R 7 8 . 8 8 T f 0 . 1 9 7 2 0 1 . 6 3 0 - 0 . T r / F 0 8 4 S 7 2 m 7 v T j 3 m 7 1 a (7 6 T f - 0 . 1 0 1 5 E 9 - 0 . 1 9 5) T N 8 � M 2 1 . 1 9 7 2 0 1 . T C o m p 6 6 1 9 8 1 4 4 5 (7 4 0 1 r 1 5 . 3 1 6 4 w) T j 0 0 . 8 6 6 2 0 . 3 6 3 5 T w (A N D) T j 0 T r E T B T 0 . 3 T 1 4 4 (M a r k) T j 0 T r 2 5 . 2 3 4 2 0 T D 3 T r - 0 T c 0 T w 8 9 , o f SimulatTZOL~Tj0 Tr ETBT0.875 0 0 1 269.042r 25. T144 (Mark) Tj0 Tr 25.23421383 084S72m7v 87 106. 3w (KLOPFE Tm.) TjJ TD 3 Tr -0.1424 TD 3 Tr -0.0416 Tc 0w (1977�) Tj0Sci TD 3 Tr -0.7.195TD 3 Tr -0.0416 T510 1.0066.

62 BYRNE AND HINDMARSH

113. H. H. ROBERTSON, “The Solution of a Set of Reaction Rate Equations,” Numerical Analaysis, in
Introduction, edited by J. Walsh (Academic Press, New York, 1966), p. 178.

114. A. RoBINsoN AND A. PROTHERO, “Global Error Estimates for Solutions to Stiff Systems of Ordinary

Differential Equations,” contributed paper, Dundee Numerical Analysis Conference, 1977.
115. J. B. ROSSER, SIAM Rev. 9, 417 (1967).
116. T. R~BNER-PETERSON, “An Eflicient Algorithm Using Backward Time-Scaled Differences for Solv-

ing Stiff Differential-Algebraic Systems,” Institute of Circuit Theory and Telecommunications,
Technical Univ. of Denmark, Lyngby, Denmark, September 1973 (unpublished).

117. R. SACKS-DAVIS, ACM Trans. Math. Software 6 540 (1980).
118. N. L. SCHRYER, Bell Laboratories Computer Science Technical Report No. 53, 1977 (unpublished).
119. M. R. SCOTT AND H. A. WATTS, “A Systematized Collection of Codes for Solving Two-Point

Boundary-Value Problems,” Numerical Methods for Dtfferential Systems, edited by L. Lapidus and

W. E. Schiesser (Academic Press, New York, 1976), p. 197.
120. W. L. SEWARD, G. FAIRWEAT~R, AND R. L. JOHNSTON, IMA J. Numer. Anal. 4, 375 (1984).
121. L. F. SHAMPINE, Math. Comput. 36, 499 (1981).
122. L. F. SHAMPINE, Sandia National Laboratory Report No. SAND 82-2.517, December 1982

(unpublished).
123. L. F. SHAMPINE, ACM Trans. Math. Software 8, 93 (1982).
124. L. F. SHAMPINE, Math. Comput. 39, 109 (1982).
125. L. F. SHAMPINE, Appl. Numer. Math. 1, 107 (1985).
126. L. F. SHAMPINE AND M. K. GORDON, SIAM Rev. 21, 1 (1979).
121. L. F. SHAMPINE AND M. K. GORDON, Computer Solution of Ordinary Dtfferential Equations. The

Initial Value Problem (Freeman, San Francisco, 1975).
128. L. F. SHAMPINE AND H. A. WATTS, Sandia National Laboratories Report No. SAND79-2374,

September 1980 (unpublished).
129. A, H. SHERMAN AND A. C. HINDMARSH, “GEARS: A Package for the Solution of Sparse, Stiff

Ordinary Differential Equations,” Electrical Power Problems: The Mathematical Challenge (SIAM,
Philadelphia, 1980), p. 190.

130. R. F. SINCOVEC AND N. K. MADSEN, ACM Trans. Math. Software 1, 232 (1975).
131. R. F. SINCOVEC, B. DEMBART, M. A. EPTON, A. M. ERISMAN, S. W. MANKE, AND E. L. YIP, IEEE

Trans. on Auto Control 26, 139 (1981).
132. R. D. SKEZEL AND A. K. KONG, ACM Trans. Math. Software 3, 326 (1977).
133. H. STETTER, “Global Error Estimation in ODE-Solvers,” in Numerical Analysis, Proceedings of the

7th Biennial Conference Held at Dundee, Scotland, Lecture Notes in Mathematics, Vol. 630, edited
by G. A. Watson (Springer-Verlag, Berlin, 1978), p. 179.

134. G. STRANG AND G. J. FIX, An Analysis of the Finite Element Method, (Prentice-Hall, Englewood
Cliffs, N.J., 1973).

135. B. SWARTZ AND B. WENDROFF, Math. Comput. 23, 37 (1969).
136. J. M. TENDLER, T. A. BICKART, AND 2. PICEL, ACM Trans. Math. Soft. 4, 339 (1978).
137. J. M. TENDLER, T. A. BICKART, AND 2. PICEL, ACM Trans. Math. Software 4, 399 (1978).
138. S. THOMPSON AND P. G. TUTTLE, “Automatic ODE Software for Use in an Industrial Environ-

ment,” in Proceedings of the 10th IMACS World Congress on System Simulation and Scienttfic
Computation (IMACS, Computer Science Deptment, Rutgers University, 1982), p. 440.

139. P. E. TISCHER AND G. K. GUPTA, Cosiderations in Designing a Cyclic Method Stiff ODE Solver,
Monash Univ. Computer Science Dept. Report, Clayton, Victoria, Australia, 1984 (unpublished).

140. R. TISCHER AND R. SACKS-DAVIS, SIAM J. Sci. Stat. Comput. 4, 733 (1983).
141. R. S. VARGA, Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1962) Chap. 6.
142. D. S. WATANABE AND Q. M. SHEIKH, SIAM J. Sci. Stat. Comput. 5, 489 (1984).
143. D. S. WATKINS AND R. W. HANSONSMITH, ACM Trans. Math. Software 9, 293 (1983).
144. H. A. WATTS AND L. F. SHAMPINE, BIT 12, 252 (1972).

